
Practices for Achieving Accuracy in Software Costing and Estimation

Practices for Achieving Accuracy in Software Costing and Estimation

	 Mohammad Ayub Latif 1	 Muhammad Yaseen Khan2	 Kashif Bashir3

Abstract

Predictability is the foremost choice of all stakeholders in software development; it could be
custom software or a general solution. Many software costing models have been proposed and
used in the software industry over the last 40 years. In this paper, we go down into the details of
recent approaches in software estimation and besides we propose the mandatory steps which
can lead towards accuracy in software cost estimation. The more mature an organization is in
costing and estimation, the more accurate results it is expected to achieve. We believe that using
the steps defined in this paper will lead to more accurate results in costing and estimation.
Unlike the Capability Maturity Model (CMM), we don’t propose any specific levels and designate
key process areas to it; but specific list of procedures towards an accurate costing and estimation
of software is clearly identified in this paper.

Keywords: software development, software costing, costs, estimation, software estimation
techniques, project management

1	 Introduction

Not everything in the world is free, people have to pay for their work to make several
contributions in return, and it continues to function in a cyclic fashion. Estimating the price and
cost of work involves a lot of things, especially for the intangible assets like softwares which
pertains to change with the pacing technological changes and human skill-sets. Achieving
accuracy in estimation is one of them. If we look at research in software costing and estimation,
we will find that significant cost failures are reported in many studies: The Standish Report
stands as a leading example [1], [2]. Boehm et al. in their classic paper [3], argue that a careful
evaluation of estimation results generated through several techniques is most likely to produce
a realistic estimate. It comes as a valid question that the mentions in the Standish Report are
still justifiable or not? Many researchers have challenged the validity of the Standish Report
[4], [5] and have provided evidences that much-exaggerated figures were promulgated in the
report [6]. We have several software costing and estimating models. Function points [8] stay
as the very classical regression approach for software costing. These estimating models based
on regression techniques conventionally function the estimates based on the historical data,
collected on the completed projects through equating various variables and relationships
therein [9]. The other widely used parametric models for software cost estimation comprise
COCOMO [10], COCOMO-II [11], SLIM [12], SEER-SEM [13], and ESTIMACS [14]. These software
estimation models churn the tentative cost, duration and efforts required for completing the
software development. They include the factors like the desired functional needs of the software
and size of the product. Along with these regression and parametric approaches, software

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 183

1 Karachi Institute of Economics and Technology, Karachi | malatif@pafkiet.edu.pk
2 Mohammad Ali Jinnah University, Karachi | yaseen.khan@jinnah.edu.pk
3 Karachi Institute of Economics and Technology, Karachi | kashif@pafkiet.edu.pk

Practices for Achieving Accuracy in Software Costing and Estimation

engineering practitioners have also employed machine learning (ML) techniques for predicting
the software cost estimates. Since we are targeting a continuous number as an output, therefore,
in ML the software cost estimation will be considered as a regression problem [15], [16]. In this
regard, a leading study was made by Krishnamoorthy et al. in [17] in which Neural Networks
(NN) and Regression tree based ML approaches were employed. An adaptive learning model for
estimating software costs is presented in [18], while other NN based ML models are employed
by many researchers for software cost estimation [19]–[21].

Researchers have also dwelled on the identification of causes that lead to inaccurate estimation
for a software [22]. Many have invested their energy to understand the exact cause. Todd,
in his famous list has concluded that “frequent requests for changes by users” and “lack
of understanding of their own requirements’’ constitutes the top two causes of inaccurate
estimates[23]. These surely cannot be considered as the only reasons; there are numerous other
reasons as well in which errors come from the estimation process itself and also from many
other areas. Right time of committing the cost of software is critically important to address. As
an experience, it comes as a practical agreement that the variability factor decreases, and the
cone of uncertainty shrinks as we continue with the software development [7]. Hence, keeping
the cone of uncertainty in context, we can suitably find the ideal time for cost commitment.

Instead of proposing any new model for software cost estimation, we believe that a step by step
procedure to attain estimation accuracy is not clearly proposed by the research community.
Therefore, in this paper, we have proposed the necessary steps in a sequential order which can
lead towards best estimation results. We have used the specified procedure in small projects,
made professionally for the industry or for the academics.

The rest of the paper is structured as follows: In the next section, we discuss several studies
pertaining to software costing and estimation and provide strategies for costing without the
knowledge of which one can never be a good estimator. Section III provides the details of how
our proposed methodology gives a step by step mechanism for accurate estimation of software.
In section IV, we describe how our methodology is applied in the estimation of software for
academics and industry and in section V, we discuss the result of proposed methodology
followed by conclusion and direction of future research in section VI.

2	 Strategies for Software Costing

A	 Time of cost commitment

Understanding of “the cone of uncertainty” [10], as it was coined by McConnell [24], guides us
that we should not commit the cost and efforts required to complete the project before creating
the prototypes of the software system. For information system, this means, the complete
Graphical User Interface (GUI) of the software system should be prepared.

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 1 84

Practices for Achieving Accuracy in Software Costing and Estimation

Figure 1: The cone of uncertainty with variability factor.

	 If we look at the figure 1, it is quite obvious that until the phase of designing is started
(which is generally the time when requirements specifications are written) the cone is narrowed
to 1.5 at the higher side and 0.6 at the lower side. This means the variability factor at this point
has reduced from 16x to 2.5x. It could be probably a good time to commit the software cost
estimate and effort.

B	 Understanding of Parkinson’s Law

Parkinson’s Law [25] stipulates that the assigned work will automatically acquire the available
time, this implies that available time automatically finishes when a particular activity is finished,
even if the work is much less to be done in allocated time. Chris, in [26], has explained the
phenomenon of Parkinson’s Law in a great detail. The irony of the fact is that even when the
assigned task requires lesser time than the allocated time, the available time finishes. On the
other hand, when the activity does not complete in available time, the time period overruns for
that activity. Hence, stringent project control is required by the project manager and/or team
lead to make sure that Parkinson’s Law is not applied in the software project.

C	 Subjectivity

A good estimator needs to know that subjectivity engenders an element of doubt. Considering
this, McConnell in his classical book [7] has identified and proved that the more controlling
knobs we have in an estimation model, the more variance we can get in our estimates. This
is the reason why the Intermediate and COCOMO II [11] models are criticized by researchers
and experts because they have 15 and 17 effort adjustment factors respectively, and these
adjustment factors can create subjectivity in estimation cases.

D	 Biasedness

An estimate can be said biased when it is the deliberate attempt to fudge estimation in one
direction or the other, when pressure is applied to the project. It needs to be avoided at all costs.

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 185

Practices for Achieving Accuracy in Software Costing and Estimation

E	 The Law of Large Numbers

The law guides us that the accuracies of empirical calculations can be achieved with number of
trials [27]. Historically, it was named “Golden Theorem” or “Bernoulli’s Theorem” [28], later in
1837, it was further explained by Simeon´ Poisson under the name “The Law of Large Numbers
(LNN)” [29]. In the context of software cost estimates, whenever, we are to give an estimate
which is based on multiple tasks, we should calculate the time frame and effort of the individual
(near atomic) tasks, and then calculate their total. The best advantage of this repeating activity
is that our estimates will cancel each other on both positive and negative sides, and therefore,
we will encounter a much diminished error that could have happened if the total estimate was
calculated in a consolidated manner.

F	 The Need of Data

Data for the purpose of estimation can be classified into three main categories: i) industrial
data, ii) historical data and iii) project data. In many research papers, the different type of data
is used. We know that the most accurate among the three is project data as it is the data of the
ongoing project itself. The only disadvantage it poses is that for the use of project data our
software development model has to be an iterative model.

G	 Avoiding arguments and let data do its job

We unknowingly enter into subjectivity when we evaluate people through assigning values of
adjustment factors used in different costing models. COCOMO-II [11] provides us with people
classification in its 15 adjustment factors where we need to select analyst capability, programmer
capability etc. as low, marginal, high etc. Evaluating a person through these value can give rise
to politically charged statements like, “my programmers are below average” etc. [7] A better
way to say the same thing in front of management is, “We averages 300 LOC productivity in the
previous project we have used the same average for the new project” [7].

H	 Accuracy, not Precision

In software costing and estimation, our goal is to be accurate, not precise [7]. For example, rather
than saying a particular project will be completed in 27.5 staff months it is better to say that the
project will take between 25 - 29 staff months. This will give us more chances of being accurate,
so the trick of the trade is to commit your estimates in ranges, this way we will achieve accuracy.

I	 Flat or Dynamic Staffing Model

Broadly the costing models can be classified as the flat staffing model [3] or dynamic model
[7]. A flat model is the one which assumes that same number of people will be working for
the software from its early requirements phase to the implementation phase. A dynamic
model assumes that team size can be changed with respect to phases of the software during
development. For example, the team size can be of 2 people in the requirement phase and 10
people in the development phase.

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 1 86

Practices for Achieving Accuracy in Software Costing and Estimation

3	 Proposed Methodology for Software Estimation

In this section, we propose 7 steps which should be followed in a proper sequence which will
surely lead towards the most accurate estimate.

1)	 Not too early, even not too late to commit. As an estimator is it very important that we
should commit our estimate to the customer when the Requirements Specifications
phase has finished. If we look at this with respect to the cone of uncertainty then by
this time the 16x factor has reduced to 2.25 [23]. How can an estimator make sure
that he/she has reached the desired point? The signed Requirements Specifications
Document (SRS) will be a good proof of this that we have reached this level. For small
projects, this point can even be until the completion of GUI where the factor can be
between 1.6x to 1.8x.

Figure 2: The circle in the cone suggesting the best time to make commitment.

	 In the figure 2, the circle shows the area where commitment can be made as the cone
of uncertainty has narrowed to a point where variability is in a manageable state and
going on either side will not create a huge problem. On the left edge of the circle the
variability factor is 0.55 and 1.5 on the higher and the lower sides that makes it 3.1x
and on the righter edge of the circle the variability factor is 1.2 and 0:8 that makes it
1.5x.

2)	 Dynamic cost estimation models. These are generally suggested as it helps in
many cases. Initially when the customers are quickly looking for the estimate to
give approval whether they would approve the software to be made or not, adding
more people to the project investigating will help in an effective manner. Once the
cone of uncertainty has narrowed to a point when the commitment can be made, the
commitment can be made and immediately after the customer approval, the team
size can be reduced during the post requirements and analysis phases. Again the

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 187

Practices for Achieving Accuracy in Software Costing and Estimation

team size can be increased on “as needed” basis. This liberty is possible only when
we use dynamic models for estimation.

3)	 Avoid cloud of uncertainty. We need to make sure that due to weak controls, cloud
of uncertainty is not formed in our project. Because, with its formation we will head
towards a disaster and our project can reach the referent point. The figure 3 shows
the effect of cloud in the cone of uncertainty. The variability factor remains until the
end of the project.

Figure 3: The cloud of uncertainty which appears because of weak project controls.

4)	 Tasks up-to 2 weeks. The overall task of the entire project must be broken down into
small task list where each task must not take more than 2 weeks. We have already
discussed in our strategy section II-E that how breaking the estimate can help us in
taking advantage of the law of large numbers.

5)	 Iterative development model. Select an iterative model for the development of the
software so immediately after the first iteration; we can use project data for later
estimation instead of historical data. We have already seen in section II-F that project
data is always the most accurate to use.

6)	 Convergence in estimating techniques. Always use multiple techniques for your
estimation case and look for conver-gence among them. In next section, we have
used multiple techniques in our estimation case and have shown how we have used
convergence among two techniques to rule out the third technique that showed
divergence from the other two.

7)	 Standard deviation. When there is convergence in multiple techniques we have
a consensus to believe that we are near to a good estimate. At this time instead
of committing the estimate as it is; a better way is to use standard deviation and,
propose the estimate with specific confidence.

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 1 88

Practices for Achieving Accuracy in Software Costing and Estimation

4	 Case Studies

We demonstrate the usage of principles of our proposed methodology in student registration
software for a small sized institute. At first, we didn’t apply the principles discussed in this
paper and just did a general estimate using the proxy-based technique of standard components.
Standard Components is discussed in depth in [7] and the authors also discuss components as
a modularity technique for Agile developments [30]. Later, we decided to apply the principles
discussed in this paper to the estimation case of students’ registration system and came up with
the following results. In this section, we discuss the complete estimation case, a brief discussion
of the problem statement is also given in this paper, but a detailed discussion is avoided as it is
not necessary for the domain of this paper.

A	 Problem Statement of the Student Registration System

The ‘student and course registration problem’ is used to calculate the effort and cost required
for the software. The process of assigning teachers to courses and the registration of students
is a frustrating and time-consuming job for any institute.

	 In the new system, after the management and teachers of the institute have decided
which course in which timings they are going to teach for the session, the administration office
enters the information into the computer system. The registered students when they log in
the system will see a report of course timings and teachers’ information. They will register
themselves for specific timings with a specific teacher. None of the course will have more than
12 students. Once 12 students have been completed for a particular course, the system will not
show that timings and teacher option to the students for registration.

	 When the student has registered himself/herself, a message is prompted on their screen
of successful registration and they can even see the monthly schedule of their classes. The
system gives a tentative date for the start of the course and if a course is closed for registration,
it gives out a specific date also. One day before the class, the system also generates a message
to the student on his/her cell phone (short texts / SMS) so that they know that their class is
starting from tomorrow.

	 Teachers can also log into the system and generate the list of students which they will
be teaching in a particular time slot. Obviously, the teachers will generate the list when the
registration of a particular slot is closed. The entire system is web-based and is developed using
ASP.Net.

B	 Initial requirements and analysis of the problem domain

The following actors and use cases were identified for the problem statement:
	 1)	 Actors
		 a)	 Teacher
		 b)	 Academic/Admin Staff
		 c)	 Student
	 2)	 Main use cases of the system with actors are shown in the table 1.

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 189

Practices for Achieving Accuracy in Software Costing and Estimation

Table 1: The main use cases and actors of the problem statement

	 Use Case	 Actor

	 Entering course and timings	 Admin/Academic

	 Selecting and registering course	 Student

	 Generating course schedule	 Student

	 Generating Student list for a course	 Teacher

C	 Costing Metric

Let C be the set of all type of components used in Student Registration System C = {c1, c2, … cn},
and L be the set of LOC required for completing individual components respective, such that, L =
{ ∫c1, ∫c2, … ∫cn} where ∫c1 indicates the LOC required for component c1. Hence by aggregating
the productions of C and L accordingly, we can have the total LOC required for completing the
whole Student Registration System. The function f(C; L) models the metric below under the
condition that provides ||C|| = ||L||.

(1)

Case 1: Without applying the principles to achieve estimation accuracy

	 The broader category of standard components is proxy based techniques and it is one
of the types of the proxy-based technique. The core idea is that if you develop many programs
that are architecturally similar to each other, you can use the standard components approach to
estimate size.
	 For estimation purpose, we have chart of historical data as depicted in table II to apply
estimation using the standard components technique.

Table 2: Components for Case Study I

	 Standard Component	 LOC/Component

	 Dynamic Web Pages	 417

	 Static Web Pages	 78

	 Database Tables	 1227

	 Reports	 388

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 1 90

Practices for Achieving Accuracy in Software Costing and Estimation

Table 3: Estimation for Case Study-I w.r.t Number of Components and LOC

Type of Component	 Number of components 	 LOC/component	 Total LOC for
	 in Case Study I		 specific component

Dynamic Web Pages	 14	 417	 417 x 14 = 5, 838
Static Web Pages	 7	 78	 78 x 7 = 546
Databases	 12	 1,227	 1, 227 x 12 = 14, 724
Reports	 11	 388	 388 x 11 = 4, 268
Business Rules	 3	 4,237	 4, 237 x 3 = 12, 711
Total LOC for the Students Registration System		 38, 087

Table 4: Estimation for Case Study-II w.r.t Number of Components and LOC

Type of Component	 Number of components 	 LOC/component	 Total LOC for
	 in Case Study I		 specific component

Dynamic Web Pages	 18	 367	 367 x 18 = 6, 606

Static Web Pages	 9	 110	 110 x 9 = 990

Databases	 10	 1, 037	 1, 037 x 10 = 10, 370

Reports	 14	 270	 270 x 14 = 3, 780

Business Rules	 2	 3, 100	 3, 100 x 2 = 6, 200

Total LOC for the Students Registration System		 27,946

	 As such systems are generally web-based information systems so this much of historical
data with the specified LOC is sufficient enough for an early estimate of effort. For the three
stated actors, we identified the number of components for the five stated types for each of the
actor. Then we sum up the total number of components of different types to reach to an early
effort estimate based on the Lines of Code (LOC). With the simple analysis, we made out that
this number of components of each type will be used in our Students Registration System.

	 Table III shows that the basic standard components technique and applying the historical
data, the first estimate using equation 1 was around 38, 000 LOC or ≈38 KLOC.

Case 2: Applying the estimation principles to discussed in this paper

	 For the simple estimation case, we tried to include maximum steps from our proposed
methodology and came up with a visible accuracy of x%. The implementation of our step by
step estimation accuracy, in this case of student registration system, is stated as below:

	 We made use of our step number 1, by delaying the estimate till we have not generated
the GUI of the software. Step 2 was also followed as we deployed maximum people at the start
of the project to get to the User Interface of the software and after getting the estimate when
we were sure of an accurate estimate we lessened the number of members of the team for later
phases. This was possible as we used dynamic costing models. Step 3 was also used as we had

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 191

Practices for Achieving Accuracy in Software Costing and Estimation

made projects before and we knew that which wrong practices can lead us towards a cloud of
uncertainty. Talking about our suggested step 4, we believe that in the first case also the project
was nicely broken down in smaller tasks so we did not bother breaking it further as we believed
that law of large numbers advantage was already applied in the first estimation case. Secondly,
with so much smaller tasks there were lesser chances that the project estimate can get away
with hidden work.

	 We already follow the rational unified approach for creating software in our software
development unit that is why we followed step 5 also as Rational Unified Process (RUP) [31] is
an iterative model and as we suggested earlier and we immediately started using project data
instead of historical data as soon as we started with the next iteration.

	 When we applied the principles we were able to commit deadline for the completion of
the project after 15 days of the inception phase, in case 1 the commitment was made after 5
days of the inception phase.

	 Please note that the historical data figures as used in case number 1 were changed as we
used project data for this estimation and we derived to project data after performing the first
iteration. The project data value chart used for the second estimation case is given in table V.

Table 5: Components for Case Study II

	 Standard Component	 LOC/Component
	 Dynamic Web Pages	 367
	 Static Web Pages	 110
	 Database Tables	 1, 037
	 Reports	 270
	 Business Rules	 3, 100

	 The summary of our estimation with equation 1 is shown in table IV. Through the basic
standard components technique and using the steps for accurate estimates as identified in this
paper and using project data, the second estimate was around 2, 8000 LOC or ≈28 KLOC.

5	 Results

The project was completed in 2 months using a team of 4 dedicated people in the team, two
working as analyst and designers and other two working as programmers; considering a
productivity of 3,000 LOC per person per month, it shows clearly that project was completed in
24, 000 LOC or ≈24 KLOC. Considering the result it is clearly evident that following the estimation
steps as specified in this paper we can reach towards more accurate results in software costing
and estimation.

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 1 92

Practices for Achieving Accuracy in Software Costing and Estimation

6	 Conclusion

In this paper, we studied about the strategies used in software costing and estimation and then
we proposed few steps which if implemented during the estimation process can lead toward
more accurate estimate of the software under development. Our results show that using five
out of the seven specified steps we were able to commit an estimate which was only deviating
16.66% from the actual outcome than compared to the other estimate which was 58.33% away
from the actual outcome. It was completely unintentional that both the estimation cases were
on the overestimate side.

There are few more observations which pave the way for future research; the first is that
the more accurate estimate was given after 15 days of the inception phase, although the first
estimate which was low in accuracy was given after 5 days of the inception phase. It needs
to be investigated what out of the two is a bigger benefit, early commitment or accuracy. For
this estimation case, we confined to the simple information system, the likes of which were
previously made by the development organization. The future investigation can be done on
different types of software and of unfamiliar areas where expertise lack.

References

[1]	 G. Standish, “The chaos report,” The Standish Group, 1994.
[2]	 M. Jørgensen and K. Moløkken-Østvold, “How large are software cost overruns? a review

of the 1994 chaos report,” Information and Software Technology, vol. 48, no. 4, pp. 297–
301, 2006.

[3]	 B. Boehm, C. Abts, and S. Chulani, “Software development cost estimation approachesa
survey,” Annals of software engineering, vol. 10, no. 1-4, pp. 177–205, 2000.

[4]	 R. L. Glass, “It failure rates-70% or 10-15%?” IEEE Software, vol. 22, no. 3, 2005.
[5]	 R. L. Glass, “The standish report: does it really describe a software crisis?” Communications

of the ACM, vol. 49, no. 8, pp. 15–16, 2006.
[6]	 K. Moløkken and M. Jørgensen, “A review of software surveys on software effort

estimation,” in Empirical Software Engineering, 2003. ISESE 2003. Proceedings. 2003
International Symposium on. IEEE, 2003, pp. 223–230.

[7]	 S. McConnell, Software estimation: demystifying the black art. Microsoft press, 2006.
[8]	 J. E. Matson, B. E. Barrett, and J. M. Mellichamp, “Software development cost estimation

using function points,” IEEE Transactions on Software Engineering, vol. 20, no. 4, pp.
275–287, 1994.

[9]	 R. E. Fairley, “Recent advances in software estimation techniques,” in Proceedings of the
14th international conference on Software engineering. ACM, 1992, pp. 382–391.

[10]	 B. W. Boehm et al., Software engineering economics. Prentice-hall Englewood Cliffs (NJ),
1981, vol. 197.

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 193

Practices for Achieving Accuracy in Software Costing and Estimation

[11]	 B. W. Boehm, R. Madachy, B. Steece et al., Software cost estimation with Cocomo II with
Cdrom. Prentice Hall PTR, 2000.

[12]	 L. H. Putnam and W. Myers, Five core metrics: the intelligence behind successful software
management. Pearson Education, 2013.

[13]	 D. D. Galorath and M. W. Evans, Software sizing, estimation, and risk management: when
performance is measured performance improves. CRC Press, 2006.

[14]	 H. A. Rubin, “Macroestimation of software development parameters: The estimacs
system,” in SOFTFAIR Conference on Software Development Tools, Techniques and
Alternatives, 1983, pp. 109–118.

[15]	 N. M. Nasrabadi, “Pattern recognition and machine learning,” Journal of electronic
imaging, vol. 16, no. 4, p. 049901, 2007.

[16]	 R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learning: An artificial
intelligence approach. Springer Science & Business Media, 2013.

[17]	 K. Srinivasan and D. Fisher, “Machine learning approaches to estimating software
development effort,” IEEE Transactions on Software Engineering, vol. 21, no. 2, pp. 126–
137, Feb 1995.

[18]	 A. Kaushik, A. Soni, and R. Soni, “An adaptive learning approach to software cost
estimation,” in Computing and Communication Systems (NCCCS), 2012 National
Conference on. IEEE, 2012, pp. 1–6.

[19]	 N. Tadayon, “Neural network approach for software cost estimation,” in Information
Technology: Coding and Computing, 2005. ITCC 2005. International Conference on, vol.
2. IEEE, 2005, pp. 815–818.

[20]	 D. E. Neumann, “An enhanced neural network technique for software risk analysis,” IEEE
Transactions on Software Engineering, vol. 28, no. 9, pp. 904–912, 2002.

[21]	 G. E. Wittig and G. Finnic, “Using artificial neural networks and function points to
estimate 4gl software development effort,” Australasian Journal of Information Systems,
vol. 1, no. 2, 1994.

[22]	 A. L. Lederer and J. Prasad, “Causes of inaccurate software development cost estimates,”
Journal of systems and software, vol. 31, no. 2, pp. 125–134, 1995.

[23]	 T. Little, “Schedule estimation and uncertainty surrounding the cone of uncertainty,”
IEEE software, vol. 23, no. 3, pp. 48–54, 2006.

[24]	 S. McConnell, Software project survival guide. Pearson Education, 1998.
[25]	 C. N. Parkinson and R. C. Osborn, Parkinson’s law, and other studies in administration.

Houghton Mifflin Boston, 1957, vol. 24.
[26]	 C. F. Kemerer, “An empirical validation of software cost estimation models,”

Communications of the ACM, vol. 30, no. 5, pp. 416–429, 1987.
[27]	 L. Mlodinow, The drunkard’s walk: How randomness rules our lives. Vintage, 2009.

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 1 94

Practices for Achieving Accuracy in Software Costing and Estimation

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 1 | Issue 195

[28]	 J. Bernoulli, “Ars conjectandi: Usum & applicationem praecedentis doctrinae in civilibus,”
Moralibus & Oeconomicis, vol. 4, 1713.

[29]	 S. D. Poisson and C. H. Schnuse, Recherches sur la probabilite´ des jugements en matiere`
criminelle et en matiere` civile. Meyer, 1841.

[30]	 S. K. T. Ziauddin and S. Zia, “An effort estimation model for agile software development,”
Advances in computer science and its applications (ACSA), vol. 2, no. 1, pp. 314–324,
2012.

[31]	 P. Kruchten, The rational unified process: an introduction. Addison-Wesley Professional,
2004.

