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Abstract

In a cloud environment, the allocation of tasks has become pivotalon account ofrapid growth
of user requests. The processing of user requests leads to a significant execution time, and a
huge amount of power is also consumed. Consequently, task scheduling for optimizing
makespan and power usage has become critical, particularly in a heterogeneous environment.
This research work proposes Power-Optimized Task Scheduling using Genetic Algorithm
(POTS-GA) that aims to minimize execution time and power consumption. The proposed
strategy employs genetic algorithm to take scheduling decision while taking into
consideration the execution time and overall power consumption of resources. The fitness
computation considering both objectives and the customized genetic operators ensure to
search for a better scheduling solution. The experiments performed on a large number of
tasks and virtual machines show that the proposed POTS-GA approach outperforms other
task scheduling strategies including Efficient Task Allocation using Genetic Algorithm
(ETA-GA), Round Robin algorithm (RRA), First Come First Serve (FCFS) and Greedy
algorithm in terms of makespan and power consumption.
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1. Introduction

As a cutting-edge technology, cloud computing has revolutionized the digital realm by
providing economical solutions for its users. It has changed the computing mechanism by its
on-demand delivery of IT resources to its users over internet with pay-per-use model [1]. The
ubiquity of cloud computing makes services available over internet from anywhere. Hence,
many industries and research organizations have adopted cloud computing technologies for
economic benefits [2]. Nowadays, the internet users may access computing services all over the
world, without requiring them to think about the hosting infrastructure. Moreover, the capability

of internet regarding provision of services through access to resources such as storage, network
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and processors, is fully harnessed by cloud computing. This type of hosting architecture is made
up of powerful machines that are deployed by service providers for use by their consumers. By
offering services to cloud service consumers, the cloud service providers generate revenue,

which makes cloud computing a widely used paradigm.

The cloud computing environment generally provides services to its users through a variety of
models corresponding to the Infrastructure, Software, and, Platform [3]. Such environment can
offer high performance because it distributes workloads over all resources in a fair and efficient
manner, resulting in reduced execution times, waiting times, maximum throughput, and
efficient resource utilization. Since the demand for cloud services is rapidly growing, the rate of
growth for large-scale computing datacenters along with huge amount of high performance
resources is also increased. A datacenter in a cloud environment serves as a storage

infrastructure for physical resources in order to offer cloud services to clients [4] [5].

The virtual resources that are used to handle the client requests are mapped to physical
machines in the cloud computing environment. The virtual machine (VM) placement
algorithms in this context are used to identify the appropriate physical machines for mapping
to the VMs [6] [7] [8] [9]. The user requests arranged as tasks are allocated to VMs with
different computational capacities. An effective task scheduling strategy maps the tasks to
appropriate VMs for minimizing overall execution time (or makespan) [10] [11] [12]. During
execution of tasks, the excessive resource utilization results in increased power consumption.
Furthermore, the deployment of multiple servers by cloud providers in the data centers results
in the consumption of large amount of power and raises the level of CO2 emission in the
environment which is not suitable for a green cloud computing environment [13] [14] [15].
Therefore, many efforts are made to reduce power usage and emission of CO; through

effective management of resources.

The scheduling techniques can generally be classified into static and dynamic categories based
on time the user requests are generated [16]. In static scheduling, the complete information
regarding the tasks and resources is known prior to execution [17]. Consequently, the decision
may be performed during compilation process. The dynamic scheduling, in contrast, maps the
tasks at runtime. Some scheduling techniques use heuristic methods that aim to reduce the
makespan, or schedule length, which affects execution and processing times in general. Since
the heuristic methods draw conclusion without large exploration, the solutions of scheduling
algorithms using this approach may not attain optimality. Other scheduling techniques

implement meta-heuristic algorithms that explore a large search-space in order to find an
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optimal solution. Meta heuristic methods in contrast to the heuristic methods explore locally
as well as globally to obtain sufficiently optimal solutions for any optimization problem.
There are many meta-heuristic approaches such as Genetic Algorithm (GA) [18], Ant Colony
Optimization [19 ], Particle Swarm Optimization (PSO)[20] and Artificial Bee Colony (ABC)
[21] optimization method to optimize scheduling in the cloud environment. These scheduling
strategies also aim to reduce makespan for client requests, similar to most of the heuristic
strategies. Moreover, the solutions in [22] [23] aim to minimize power in cloud environments.
Similarly, hybrid techniques [24] [25] incorporate heuristic and meta-heuristic approaches
combined together, while attempting to improve the exploration of search space in order to
determine an optimal solution. However, most of these approaches do not either aim to
concurrently reduce both makespan as well as power consumption, or are unable to produce

effective schedules minimizing both objectives.

In this paper, we propose Power Optimized Task Scheduling using Genetic Algorithm
(POTS-GA) to schedule the tasks to VMs in the cloud environment. The proposed algorithm
reduces the overall execution time of tasks and power by using fitness function that considers
both objectives to search for optimal mapping of tasks to VMs. We use genetic algorithm for
task scheduling while searching a large solution space. Our experiments performed with a
large number of tasks and VMs demonstrate that the proposed POTS-GA algorithm

outperforms other scheduling techniques in terms of makespan and power consumption.

The remaining paper is organized as follows. Section 2 describes a brief overview of the
work related to task scheduling. The proposed POTS-GA algorithm is presented in Section 3.
The experimental setup with system configuration and the results of evaluation are discussed

in Section 4. The paper is concluded with findings and future directions in Section 5.

2. Related Work

Aimed at optimizing diverse objectives, several task scheduling strategies have recently been
proposed by the researchers. Table 1 and Table 2 show a comparative analysis of the
prominent research work conducted for heuristic and meta-heuristic based scheduling
strategies, respectively. The comparison is performed in terms of major contribution, features
and weaknesses. The scheduling strategies deploying heuristic, meta-heuristic or hybrid

approaches for scheduling are summarized below.
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Table 1. Comparison of prominent heuristic-based scheduling methodologies

Reference Algorithm Contribution Main Features Weakness
[26] HEFT It works on reduction | Use combination of two | There is no
of  execution time | algorithms which are | evaluation of power
(Makespan) HEFT and critical path | consumption.
on processor (CPOP)

[27] SHEFT Improves Makespan A directed cyclic | Although there has
graph(DAG) is used for | been improvement
weights calculation in resource

utilizationbut power
consumption is not
considered.

[28] Min-Min It improves | It implements | It is evaluated on

Max Min makespan as well as | combination of two | small data in grid
resource utilization | scheduling approaches | environment.
for small tasks according to size of tasks | without any
consideration of
power consumed.
[29] TSACS Focus on improving | Travelling salesman | There is no
schedule length and | approach (TSP) is used | consideration of
load balancing. for the selection of tasks. | power consumption
for data centers.

[30] FCFS, RRA | Minimize makespan The approach maps the | It shows  better
tasks to VMs according | results in start and
to their arrival time in a | its performance is
queue ceased with the

passage of time. Not
suitable for multiple

objectives.

Table2. Comparison of prominent meta heuristic-based scheduling methodologies
Reference Algorithm Contribution Main Features Weakness

[22] TS-GA Reduce makespan | Tournament Selection is | The performance of
and cost of tasks used in Genetic | the algorithm is
Algorithm (GA) for the | evaluated on small
dataset with no
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selection of tasks consideration of
power consumed.
[31] MGGS Improves execution | It uses Greedy algorithm | It combines GA
time and resource | for Updation of | with greedy
utilization vectorsand roulette | strategy, while the
wheel is used for the | power consumption
selection method. is not optimized.
[18] ETA-GA It reduces overall | It has multi-objective | It converges early
completion time of | optimization. and  consequently,
tasks and chances of the performance of
failure algorithm drops as
the  number of
cloudlets increases.
[32] Multi- Optimize task | A set of dominated and | For optimization,
objective execution time and | non-dominated particles | the approach does
PSO cost is kept. not include power
consumption.

In heuristic-based scheduling algorithms, the Heterogeneous-Earliest-Finish-Time (HEFT)
algorithm proposed by Topcuoglu et al. [26] is a widely used algorithm for scheduling tasks
on heterogeneous systems. The tasks at each stage are selected rank-wise and assigned to the
processors, while employing an insertion-based strategy to minimize the task's earliest finish
time. Lin et al. [27] proposed the scalable HEFT algorithm to allocate the workflow
dynamically on cloud platforms by choosing a resource that has the shortest completion time
from the current free resources. The resources that remain idle from a given threshold are
released elastically at run time. Etminani et al. [28] present an algorithm to improve resource
utilization and makespan for grid environment. The proposed method combines the Min-Min
and Max-Min scheduling algorithms in order to gain the advantages of both algorithms. The
Max-Min approach is executed for large sized tasks in the queue, whereas, Min-Min
algorithm works well for a large number of small sized tasks. Similarly, Gupta et al. [33]
propose several variants of HEFT based on consideration of communication cost. The
proposed approach is shown to improve performance of HEFT, however, the variants work
with higher complexity than HEFT and are applicable to workflows having dependencies

among tasks.
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A Trust Aware Distributed and Collaborative Scheduler (TADCS) is proposed by Rouzaud et
al. [34] that allocates the tasks on heterogeneous VMs based on the user objectives, trust and
protection to optimize the power as well as to increase the performance. Elzeki et al. [35] use
max-min scheduling approach in which execution time is used for the selection of tasks
instead of completion time to reduce both execution and waiting time. The task with the
highest execution time is mapped to resource producing the lowest completion time to
improve overall response time.

An integer programming based optimization technique is presented by Liu et al. [36] with the
aim to reduce energy consumption and overall processing time of the tasks. Their method
sorts all servers based on energy consumption of resources, and then assigns jobs in a greedy
manner to the most energy-efficient server to optimize power. Buyya et al. [37] focus on
developing dynamic resource provisioning and provide methods for efficiently managing
workloads between datacenters to optimize energy conservation and enhance the
performance of data centers. Their algorithm explains the VM allocation policies that
consider both QoS and power consumption.

An energy-efficient task scheduling algorithm (ETSA) was presented by Panda et al. [38] for
scheduling heterogeneous workloads in cloud environment. The ETSA algorithm makes a
scheduling decision after considering the task's completion time and overall resource
utilization. The task with minimum normalization value is mapped to virtual machine to
reduce makespan as well as power consumption. Similarly, a task scheduler based on
travelling salesman problem (TSP) is proposed by Nasr et al. [29] for task scheduling to
improve makespan. In the proposed algorithm, tasks are grouped as clusters, then execution
time of each cluster is calculated to create a matrix similar to the TSP matrix, and at the end
by using the nearest neighbor algorithm clusters are mapped to virtual machines.

The Cloud Acknowledgement Scheme (CACKS), a new method for acknowledging packets
by using a single hop cloud in order to reduce energy consumption and improve network
performance is proposed by Kaja et al. [39]. The proposed approach uses variable time and
variable frequency based algorithms to minimize energy and increase performance. The
shortest-round-vibrant-queue (SRVQ) algorithm proposed by Jeevitha et al. [40] combines
the shortest-job-first algorithm and the round-robin method, while optimizing the energy
consumption. All tasks are sorted in ascending order by burst time, which is subsequently
used to optimize makespan. The method employs the voltage & frequency scaling approach,
which aims to minimize process waiting time and enhance the efficiency of energy

consumption.
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In [30], the author describes First-Come-First-Serve (FCFS), Round-Robin, Shortest-Job-
First , Min-Min, and Max-Min scheduling algorithms in detail. The FCFS approach maps the
cloudlets to virtual machines according to their arrival time in a queue, and the allocation
policy of algorithm is simply sequential. The Round-Robin algorithm iteratively allocates
virtual machines to tasks with each iteration starting from first virtual machine and allocation
of task is decided by time slice. In Min-Min task scheduling algorithm, small tasks are
mapped first, while in Max-Min scheduling, the large tasks are executed first.

Li et al. [41] propose a greedy approach to decrease the overall completion time. In their
scheduling approach, the tasks are initially arranged in descending order w.r.t their length
while virtual machines are arranged in descending order according to processing power.
After sorting, the tasks are iteratively mapped to virtual machines like RRA.

In terms of the meta-heuristic-based scheduling strategies, Rekha et al. [18] proposed the
ETA-GA scheduling approach to perform mapping of tasks to resources based on resource
capability. The task completion time and failure probability are used to compute the fitness of
each chromosome. The ETA-GA approach chooses two chromosomes from the population
for crossover and mutation based on fitness value. The algorithm suffers from pre-mature
convergence due to selection of best chromosome in each generation. Moreover, the power
consumption is not optimized, which results in VMs consuming more energy. Similarly,
Zhao et al. [42] suggest a GA-based optimization method for allocating independent tasks to
dynamic resources in cloud computing environments. The algorithm encodes chromosomes
as digital strings, while fitness function takes into account the deadline criteria of task
completion for optimizing resource usage and execution time. Soulegan et al.[43] propose
another genetic algorithm based approach for task scheduling. Their approach uses fitness
function as a sum of cost and makespan for optimizing the schedules. Similarly, a power-
aware approach using non-dominated sorting genetic algorithm for scheduling on cloud
platforms is given by Khan [11]. The approach initially optimizes the objective functions and
then arranges VM indexes so that the VMs with higher weights are considered for frequent
assignment to tasks.

Kaur et al. [23] combine two heuristics corresponding to assigning of the longest cloudlet
and the shortest cloudlet to the fastest processor for task scheduling in cloud environment
while taking into account the parameters of computational complexity and the capacity of
resources. The characteristics of heuristics and randomization are also incorporated in their
strategy to increase population diversity and find a better solution with a short makespan.

Similarly, the Tournament Selection based Genetic Algorithm (TS-GA) is proposed by
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Hamad et al. [22]. Their algorithm uses binary encoding scheme for population initialization.
Its objective function considers overall finish time of tasks on available resources. When
compared to round-robin and simple genetic algorithms, TS-GA performs better for small
number of VMs.

Ying et al.[12] introduce an energy-aware task scheduling algorithm to improve the
makespan and energy consumption using GA. The Dynamic Voltage Scaling (DVS) is
employed to allow CPUs to react dynamically on various voltage supply levels to increase
energy efficiency. The entire search space is explored by implementing a genetic algorithm.
A modified genetic algorithm with enhanced max-min algorithm is introduced by Singh et al.
[44] for scheduling independent tasks. The enhanced max-min algorithm is used to generate
initial population to get optimal results for makespan. The largest task based on execution
time is assigned to the VM having small amount of processing power. Similarly, in [45] [46]
the authors also use genetic algorithm to reduce response time and energy consumption. In
hybrid scheduling approaches, Alsaidy et al. [25] suggest heuristics for initialization of
solutions for PSO. The heuristics in the hybrid approach allocate VMs to tasks using
minimum execution time of a task computed among all virtual machines and a round-robin
assignment mechanism. Another hybrid technique [24] combining heuristic and metaheuristic
strategies also attempts to improve the exploration of search space in order to determine an
optimal solution by incorporating the Shortest-Job-to-Fastest-Processor (SJFP) method along
with PSO. The authors introduce SJFP heuristic in initialization phase for a better selection of
overall population. Similarly, Manasrah et al. [47] propose a hybrid algorithm that divides
iterations in PSO and GA algorithms. The population is initially updated using the iterations
of GA algorithm. Subsequently, the population generated by the GA algorithm is used by
PSO for optimizing schedules of workflows executing on cloud platforms.

In contrast to the methodologies stated above, this paper proposes power-optimized task
scheduling using genetic algorithm (POTS-GA) that aims to efficiently execute user requests
to generate small schedule length, while optimizing makespan as well as power consumption.
The finish time of each VM and overall power consumption of tasks on virtual machines are
used for computing fitness and subsequent assignment of VMs to tasks. Through
consideration of both objectives, the POTS-GA strategy is able to significantly perform better

than other approaches in terms of makespan and power consumption.
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3.  Power Optimized Task Scheduling using Genetic Algorithm (POTS-GA)
The POTS-GA scheduling approach uses genetic algorithm to search for solution space in
order to get optimal scheduling. It aims at minimizing power consumption as well as

reducing response time without affecting task performance.
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Figure 1. POTS-GA Scheduler

Figure 1 depicts the main phases of the proposed POTS-GA algorithm. The tasks of various
sizes and virtual machines with diverse processing capability and power consumption are
used as input by the algorithm to get best mapping of tasks to VMs. The GA starts with a
random population of individual chromosomes, where each chromosome represents a feasible
mapping. The fitness of each individual chromosome is assessed by using the overall
execution time and the power of virtual machines. The genetic operators i.e. crossover and
mutation are used to generate new viable solutions. The chromosomes (mappings) with low
makespan and power are likely to be retained among next generations. The tasks are then
mapped to virtual machines using the most appropriate mapping found through the
chromosome having the best fitness value.

The major steps of the POTS-GA scheduling approach are detailed below:
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3.1. Problem Encoding and Population Initialization

The POTS-GA algorithm uses a discrete encoding scheme for representing a chromosome as
a collection of 1xnvalues, where n represents the number of tasks. The tasks are to be
mapped to m virtual machines. The entire population of chromosomes is initialized with
chromosomes having random gene values, where each gene value represents index of the VM
to be considered for allocation to a task.

Assume the tasks7;, 7>, T3, ..., Tigto be mapped to virtual machines Vi, V>, Vs, Vi Vs, where
more than one task can be mapped to a VM. A chromosome with values {3,5,3,2,5,1,3,2,3,2}
would imply the task7;being mapped to V3. Similarly, 7>, T3, T4, Ts5, Ts, T7, Ts, To, T1o are
mapped to Vs, Vs, Vo, Vs Vi, Vs, Vo, V3, Vo, respectively. The POTS-GA algorithm searches

for the mapping with the objective of minimizing makespan and power consumption.

3.2.  Fitness Function

The fitness of a chromosome in the POTS-GA algorithm depends upon both the makespan
and the power consumption. The computation of makespan requires execution time and
finish time of the virtual machines, whereas, the power consumption is based on the power
requirement of the machine and the execution time of tasks. For our scenario, we formulate

the problem as Min(0 (¥, W)), as discussed below.

The execution time E (7, y,)of a task T; that is assigned to the VM Viis computed as:

(M

T;.length

E(Ti'Vk) - Vi.mips

where T;Vi=0, 1, 2....n-1, represents tasks, the variable length represents the individual
length or number of instructions of each task, and mips is the processing capability of each
virtual machine in millions of instructions per second.

The finish time of a virtual machine Vi is the sum of execution times of tasks TS T,

assigned to the virtual machine, as given below:

Tg|-1
FVk = Zl:o| E(Tsi.Vk)’ )

where Fy, ,k=0,1,2,...m-1 represents the finish time of tasks 7 assigned to each virtual
machine Vi Since the virtual machines are running concurrently, the makespan y is the

maximum finish time among all VMs.
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Y = max(Fy, ),Vk=0,1.2,.....m-1 3)
The power consumption Wfor overall execution of tasks is computed as:

W= ¥+Goies) @

3600%1000

where pwr represents the power consumption (in kWh) of the host on which the virtual
machines are running.

The fitness of a chromosome is computed as the sum of scaled values of makespan and
power consumption. Let P™**&ip™ M represent the maximum and minimum makespan
values, and WM &W™™ represent the maximum and minimum power consumption among

all mappings (chromosomes,) as computed below:

n-1.
Pmex =« ((max(vpo Cl.length)) (5)

(min(vIL;vmips)

, in(v=1c,
Pmin = ((mln(Vle Cl.length)) ©)

(max (VI V. mips)

max — ,fymax pwr
w =y * (3600*1000) (7)

wmin — tl,min % ( pwr ) (8)

3600+1000
For a chromosome, having power W and makespan , the fitness O is calculated as:

¢_¢min W_Wmin

6 = lI)max_ lI,min wmax_ ymin (9)

The two objectives of minimizing the power consumption and makespan are integrated into

the fitness value® that is used by the POTS-GA algorithm to search for optimal mapping.

3.3. Selection Operator

The selection operator used in the proposed algorithm is tournament selection which selects
k-individuals from the population. The fitness of each chromosome based on execution time
and power is calculated and the selected ‘k’ chromosomes are sorted in order of fitness
values. The best chromosomes with high fitness value are then selected for generating new

chromosomes through crossover and mutation.
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3.4. Crossover

The POTS-GA algorithm uses single-point &two-point crossover operators to produce
offspring for a new population. For instance, two chromosomes (having indices of mapped
virtual machines) with a randomly selected crossover point C=5 for one-point crossover, and
the corresponding output chromosomes obtained after crossover are shown in Figures 2 and

3, respectively.

Parents

E I5 B 2 s 1 |2 |2 |2 I2 |
2 |a s a l2 L |4 s |a 2 ]

Crossover Point
Figure 2. Chromosomes before Single Point Crossover

Offspring

s Is 3 J2 |5 |1 J4 [5 f4 J2 |
2 % & @ & & | 8 [8 & ]

Figure 3. Chromosomes after Single-Point Crossover

Similarly, for the two-point crossover with two randomly chosen crossover points C;=4 and

C>=8, the input chromosomes and the offspring are shown in Figures 4 and 5, respectively.

Parents
|z Is B A 5 . |z |2 g |2 |
[2 [a [5 Ja 2 [x [a [s 1 [2 |
Crossover Points

Figure 4. Chromosomes before the Two-Point Crossover

Offspring
B |5 |z |z E [1 a s B |2 |
2 la E la E L B B s E |

Figure 5. Chromosomes after Two-Point Crossover
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3.5. Mutation
The POTS-GA algorithm performs mutation (Figure 6) to generate random VM indices to be
used for mapping. The mutation rate with a probability defines the frequency of replacing

VM indices with new indices.

Before Mutation
3 |5 [3 [2 |5 |1 [4 [5 4 ]2 |
After Mutation
2 [+ [+ [5 [s [+ [5 [+ 3 [2 |

Figure 6. Mutation Operation

For mutation, a random integer r, 0 < r <1 is generated and the VM indices in a chromosome

are replaced only if the value of r exists within the range of the mutation probability.

3.6. Find Best Mapping
The POTS-GA algorithm uses the fitness value to determine the best mapping. The
chromosome producing the lowest fitness value is computed and compared with the previous

best chromosome at each iteration for update.

3.7.  Allocation of Virtual Machines
After execution of all iterations, the chromosome having the best fitness value is used for
assigning tasks to VMs. The individual genes representing VMs are allocated to the

corresponding tasks.

Algorithm 1: Power optimized task scheduling using genetic
algorithm (POTS-GA)

l:  /* Let Vj, Vj =0,1,2,....m-1represent the set of virtual machines, each
having different parameters and let 7;,Vi=0,1,2,...,n-1be the set of tasks,
each being characterized with different features. The variable # is used
to represent the tournament size. Let P;, Vi=0,1,2,..., |P|-1 represent the
population of chromosomes */
Begin

x= 1, Max= 1000

// Main loop to search for best mapping
: while (x< =Max) do
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10:

11:

12:

13:
14:

15:
16:
17:
18:
19:
20:

21:
22:
23:
24:
25:
26:
27:

28:
29:

//Initialize the population P chromosomes with random
//VM indices R;
P-{R; Vj=0,1,2,...n-1}, Vi=0,1,2,..., |P|-1
if (x==1) then
B=0 //Initialize index for the global best
//chromosome
end if
Compute fitness O; of each chromosome P;, Vi=0,1,2,...,|P|-1 by
using Equations (1-9) of Section 3.2
O={}, R={},S={} // Initialize Q and R and S as //temporary
population variables
//Select y chromosomes using tournament selection given in
Section 3.3.
R= tournamentSelection (P)
//Let S be the remaining individuals to be passed to //next
generation as elites
if 7%2!=0 then
Add chromosome R; .1 to the population Q
end if
//Apply crossover as mentioned in Section 3.4.
for j/= O0to n -1 step 2 do
(u,v) = crossover (P, j, j+1) // return pair of
//chromosomes u and v
Add chromosomes u and v to population Q
end for
//Apply mutation operator as described in Section 3.5
P = mutation (Q)
Add S to population P
x=x+1
//Find index of the chromosome having the best fitness
//values as given in Section 3.6
k = findBestMapping()
if Op <O then
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30: B = k //Update the global best chromosome
31: endif

32: end while

33: //Allocate the tasks to VMs

34: forj=0,1,2,...,n-1 do

35: Map task Tj to the VM Pg/j]

36: end for

37: End

The POTS-GA algorithm (Algorithm 1) performs initialization of the variables for iteration
count and maximum iteration at step 3. At step 5, the loop is iterated for the given iteration
count to search for optimal mapping. The step 6 initializes the population with random virtual
machine and index of the global best chromosome B is initialized at steps 7-9. The fitness of
each individual chromosome based on makespan and power consumption is computed at step
10. The step 11 initializes temporary population variables. The # chromosomes are selected
through tournament selection at step 13. The steps 15-22 add chromosomes to the population
Q in the form of pairs. The remaining chromosome is added using steps 15-17, while the
steps 19-22 perform crossover to add new chromosomes as pairs to the population Q. The
mutation operator is performed on the population Q to produce the new population P at step
24. The remaining chromosomes S are added to the population P, and the loop count is
incremented subsequently. The steps 28-31 find the best mapping and update the global best
chromosome B. The allocation of virtual machines to task is performed through final steps by
using the elements of the best chromosome Pg. The complexity of the POTS-GA algorithm is
O(|P|*Max*n), where |P|, Max, and n represent respectively the population size, the number
of iterations and the number of tasks. Since POTS-GA uses a meta-heuristic approach, its
cost for large-scale environments may be reduced by limiting the population size and the

number of iterations.
4. Experimentation and Results

4.1 Simulation Setup

For experimentation, the CloudSim framework [48] has been used. It includes
PowerDatacenter, PowerHost and PowerVm for power-based configurations for Datacenters,
Hosts and VMs, respectively. Each task contains a user request that is comprised of a number

of instructions. The algorithms have been evaluated with number of tasks set to vary from 50
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to 500 and the number of VMs set to vary from 4 to 16. We have performed simulation using

configuration parameters given in Table 3.

Table 3. Platform and configuration parameters

Simulation CloudSim 4.0 | Number of Host 4
Platform Machines
Virtual = Machine Xen Task Length | 1000-2000
Monitor (VMM) (Millions of
instructions)
Task Scheduler Space Shared | VM processing 1
elements
System X86 Number of Tasks | 50,100,...,500
Architecture
Processing elements 1 Number of VM 4,816
of Tasks
Number of 2 VM RAM 512MB
Datacenters
VM Bandwidth 10 Megabits/s | Power (Watts) 200-300

Table 4. Parameters used for the POTS-GA algorithm

Encoding Discrete Crossover 0.8
probability

Population Size 100 Mutation operator | Random resetting

Max iterations 1000 Mutation 0.05
probability

Crossover 30% Single point | Tournament size 80% of

operator and 70% two- point population

The parameters used for the POTS-GA algorithm are given in Table 4. For performance
evaluation, the POTS-GA algorithm is compared with other algorithms including the ETA-
GA , Robin algorithm (RRA), FCFS, and Greedy algorithm. The algorithms are evaluated in
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terms of makespan and power consumption. The makespan or schedule length is the total
amount of time required for execution of the tasks mapped to virtual machines. Similarly, the
power consumption (kWh) represents the power consumed by the virtual machines for

executing all the scheduled tasks.

4.2 Evaluation Outcomes
This section provides an overview of the performance results of power and makespan for the

04, 08, and 16 virtual machines, respectively.

4.2.1 Makespan

Figure 7 depicts the makespan of various methods utilizing four VMs with diverse numbers
of tasks, ranging from 50 to 500.The performance of the POTS-GA algorithm and the ETA-
GA algorithm is nearly identical when the number of tasks is small. It is evident from the
figure that with a large number of tasks, the performance of ETA-GA degrades beyond the
batch size of 300. Overall, POTS-GA surpasses all other strategies in terms of makespan. The
ETA-GA algorithm performs next to the POTS-GA algorithm by producing small makespan

values.
3000

< 6000 _ - :
© - = = =
L= 5 - - - - -
g 4000 = £ = £ E 5 g
= = = = = = 5 =
2 g = = = = = z =
SFTTETEN LN e M “
LA G M M R Min Mnen N 0En AIL:

50 100 150 200 250 300 350 400 450 500

No. of Tasks
B ETA-GA ORRA DOPOTS-GA =FCFS B Greedy

Figure 7. Makespan for different number of tasks using 04 virtual machines
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With eight VMs, the makespan for the evaluated algorithms with various number of tasks is
shown in Figure 8. The proposed technique POTS-GA has drastically produced
small makespan when compared to all other benchmark scheduling techniques. When there
are a few tasks, the RRA algorithm performs better than the Greedy algorithm. As the
number of tasks is increased, the RRA performs the worst by producing large makespan
values. Followed by the performance of the POTS-GA algorithm, the ETA-GA algorithm
performs significantly better than RRA, Greedy and FCFS for all batch sizes.

The schedule length for various scheduling algorithms, with different number of tasks
being executed on 16 VMs is depicted in Figure 9. Similar to previous scenarios, when
virtual machines are small in number, the POTS-GA algorithm continues to outperform other

task scheduling techniques in this case when the number of VMs is large.
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3000

N
wu
o
o

2000

1500
1000

500 .
0

ETA-GA POTS-GA FCFS Greedy

Average Makespan

Scheduling Techniques

Figure 10. Average Makespan obtained for all configurations of VMs

KIET Journal of Computing & Information Sciences [KJCIS] Volume 7 1 Issue 1 \\‘



DOI: 10.51153/Kjcis.v7i1.194

The overall average makespan of various scheduling techniques is shown in Figure 10. The
results depict that the proposed POTS-GA algorithm provides better execution time in almost
all batch sizes of tasks. Overall, the POTS-GA algorithm achieves65%, 75%, 80% and 73%
average improvement over the ETA-GA, RRA, FCFS and Greedy algorithms, respectively, in

terms of schedule length.

4.2.2 Power Consumption
The power consumed for execution of tasks using the schedule generated by the various

scheduling strategies, with different number of tasks and VMs is given in Table 5.

Table 5. Power Consumption for different number of tasks using 04 virtual machines

Tasks

50 100 150 200 250 300 350 400 450 500

ETA-GA | 4282 | 67.46 | 143.60 | 182.60 | 210.30 | 253.3 | 284.20 | 332.20 | 367.10 | 407.50

RRA 5239 | 85.52 | 133.18 | 177.94 | 204.06 | 220.37 | 269.66 | 323.02 | 352.33 | 379.19
POTS- 2.97 8.42 13.92 | 30.51 |39.94 | 46.52 | 70.03 | 87.12 | 119.86 | 142.26
GA

FCFS 91.23 157.8 | 215.45 | 278.18 | 327.64 | 367.52 | 398.78 | 426.34 | 473.36 | 512.93

Greedy 62.9 92.8 110.45 | 1583 | 181.6 | 2103 | 267.5 | 3055 |3352 | 3752

The power consumption incurred for schedules produced by ETA-GA and the proposed
strategy POTS-GA 1is similar to some extent when number of tasks is small. But the power
consumption for execution of tasks scheduled through ETA-GA is exponentially increased
for large number of tasks. Table Sclearly depicts that the power consumption incurred for
execution of tasks scheduled through POTS-GA is significantly less than RRA, FCFS,
Greedy and ETA-GA.

Table 6. Power consumption for different number of tasks using 08 virtual machines

Tasks

50 100 150 200 250 300 350 400 450 500

ETA-GA | 21.86 | 3998 |60.45 |86.29 | 114.46 | 148.54 | 191.89 | 251.97 | 298.25 | 367.72

RRA 49.88 | 9532 | 172.50 | 201.86 | 256.00 | 286.44 | 310.73 | 347.12 | 415.25 | 456.68

POTS-GA | 7.62 11.92 | 28.07 | 3594 |41.52 | 66.03 | 85.12 | 121.86 | 146.26 | 167.98
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FCFS 100.82 | 165.24 | 215.2 | 295.72 | 385.87 | 476.21 | 543.06 | 597.94 | 655.14 | 715.47

Greedy 76.24 | 92.85 | 167.28 | 197.36 | 256.65 | 298.57 | 343.42 | 368.24 | 386.92 | 395.56

The power consumption of different algorithms having various number of tasks with eight
VMs is shown in Table 6. Overall, the POTS-GA outperforms all other scheduling strategies
including the ETA-GA algorithm. For large number of tasks, the Greedy algorithm
outperforms RRA in terms of power consumption. The FCFS algorithm results in the highest

power consumption for all configurations with varying number of tasks.

Table 7: Power Consumption incurred for execution of tasks on 16 VMs

Tasks

50 100 150 200 250 300 350 400 450 500

ETA-GA 27.63 | 85.82 | 165.45 | 196.56 | 196.46 | 232.54 | 254.89 | 294.97 | 323.92 | 362.72

RRA 42.87 | 94.54 | 195.92 | 257.86 | 277.00 | 358.74 | 408.07 | 449.12 | 487.76 | 510.87

POTS-GA | 7.41 20.92 | 35.07 | 5494 | 71.52 |88.03 | 125.12 | 136.86 | 162.26 | 185.87

FCFS 98.68 | 163.54 | 272.32 | 345.67 | 412.79 | 495.44 | 578.07 | 654.28 | 714.83 | 847.65

Greedy 52.85 | 103.78 | 207.26 | 244.65 | 256.57 | 297.94 | 315.24 | 388.43 | 405.56 | 432.48

Table 7 illustrates the power consumption of POTS-GA and other methods while using
16 virtual machines with varying number of tasks. According to Table 7, POTS-GA
consumes less power than FCFS, RRA, Greedy, and ETA-GA. The FCFS algorithm results in
the highest values of power consumption for all scenarios. The ETA-GA algorithm
consumes less energy for 50 to 250 tasks. However, as the number of tasks reaches up to 300,
the performance of the ETA-GA algorithm starts to deteriorate. Similar to the results for 08
VMs, the RRA algorithm generates schedules that incur less power consumption in
comparison with the FCFS algorithm.

Figure 11 shows the overall power usage of several scheduling strategies with various
virtual machines. As shown in the diagram that the POTS-GA consumes less power than
other approaches for all batch sizes of tasks using different number of VMs. The average
improvement in power consumption achieved by POTS-GA over the ETA-GA, RRA, FCFS
and Greedy algorithms is 66%, 76%, 82%, and 74%, respectively.
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5. Conclusion

For cloud computing environments, task scheduling is considered to be a major issue due to
its complexity. On high performance cloud platforms, an effective task scheduling can
improve overall execution time as well as power consumption. In this paper, we have
proposed the POTS-GA algorithm that aims to optimize execution time and power
consumption by generating small length schedules while simultaneously considering the
power of each virtual machine. The genetic algorithm uses power of virtual machine and
makespan for computing fitness of each chromosome. After a number of iterations, the
chromosome with best mapping is found and the tasks are then assigned to VMs. We have
conducted experiments using various number of tasks and VMs to evaluate the performance
of POTS-GA and other algorithms. The performance results show that the POTS-GA
algorithm performs 65%, 75%, 80% and 73%better for makespan and 66%, 76%, 82%, and
74%better for power consumption than the ETA-GA, RRA, FCFS, and Greedy algorithms,

respectively.

For our current implementation, the execution cost & resource utilization are not
considered in our proposed approach, so we aim to extend our work by considering these
optimization metrics in future. Moreover, a heuristic for initializing the population may be

incorporated to enhance performance of the proposed algorithm.
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