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1. Introduction

Multi-temporal and multi-spectral remote sensing images are good instruments that may help 
traditional agricultural systems by properly monitoring and calculating crop yields prior to 
harvesting. Traditional agricultural systems mostly depend on limited ground-survey data. 
Time-series satellite images of vegetation phenology serve a significant role in vegetation monitoring 
and land-cover categorization because they can record vegetation information at various 
development phases. It's impossible to overstate how important remote sensing has become in the last 
several decades. In order to monitor land surface dynamics, natural resource management, and the 
general status of the ecosystem, remote sensing sensors have been used from space. In order to begin 
vegetation conservation and restoration projects, it is necessary to know the existing status of plant 
cover. Several early studies of ecosystems and land cover have used agricultural census data to map 
paddy rice fields at the global and regional scales.

It is necessary and a necessity to have a timely and accurate forecast of yield at a broad scale in order 
to reduce climate risk and assure food security, particularly in light of climate change and the growing 
frequency of severe weather events. Rice is one of the most significant agricultural goods in the 
world, and Pakistan has a unique position in this regard due to the country's yearly output of more 
than 7.2 million metric tons of rice. Wheat is the most important agricultural product in the world. 
Because there are many diverse circumstances and limits, the evaluation of crop output plays a 
significant part in the process of formulating agricultural policy. Rice yield estimation is an important 
component of overall food security. Any shift in the values of the effective parameters has the 
potential to induce shifts in rice yield, which in turn will have an impact on the population's ability to 
maintain a stable diet. It’s impossible to overstate how important remote sensing has become in the 

last several decades. In order to monitor land surface dynamics, natural resource management, and 
the general status of the ecosystem, remote sensing sensors have been used from space [1]. Here, 
plant, soil, and water are the earth's surface elements that are being discussed. The spectral signature 
of a substance may be used to identify it if the sensing system has enough spectral resolution to 
differentiate it from other materials' spectral signatures. Based on this presumption, multispectral 
remote sensing may be carried out. Paddy rice field detection and selection is an essential part of 
getting more precise information about agricultural water consumption in order to efficiently manage 
fresh water resources [2].
Previous studies of land cover and ecosystems have used agricultural census data to map paddy rice 
fields at the regional and global scales. These datasets were created late in the 1980s and in the early 
1990s, and they were used to analyze global climate and greenhouse gas emissions. It has recently 
been common practice to combine agricultural census data up to national level to study paddy rice 
growing areas [3][4]. Self-sufficiency potential must be established in order to estimate rice output. 
When it comes to calculating rice output, farmers are often asked to provide information on their 
crop. An alternative approach is collecting a sample of rice grains and then multiplying that number 
by the overall harvest area, which gives an estimate of rice output. During harvesting times, both rice 
production estimate techniques are used. As a result, it is critical to know how rice fields are laid out 
in order to manage water resources and estimate gas emissions. It is important to know the land cover 
features of rice plants. During the rice life cycle, rice land coverage fluctuates. During the growing 
season, water covers almost the whole area of irrigated rice fields. There is a maximum rice 
vegetation coverage (the age of rice =2 months) and then a progressive decline until the time of its 
harvest [5]. Using satellite remote sensing technology to monitor land use and changes in land cover 
has been widely used and well accepted.
Time-series satellite photos of vegetation phenology serve a significant function in tracking 
vegetation and land-cover categorization because they can record vegetation information at various 
development phases. It has been widely used in paddy-rice monitoring and mapping during the 
previous several decades, particularly optical remote-sensing pictures.
Because of their high temporal and moderate geographical resolution, MODIS data have been used 
to map rice all over the globe. Using Landsat (30 m) data instead of MODIS may provide better 
accurate rice maps for smaller regions. Recent work has used the superior spectral and spatial 
resolution of Sentinel-2A MSI (Multispectral Instrument) data for mapping farms and other forms of 
land cover Utilizing high-resolution time-series imagery such as Quick Bird, IKONOS, and Rapid 
Eye, rice or crops have also been mapped. Because hyperspectral pictures are able to detect more 

crop types, they can enhance crop mapping accuracy.
Rice and other land-cover types have been mapped using Decision Trees (DT),Support Vector 
Machines (SVM), Random Forests (RF)[6][7].In order to increase classification accuracy, more 
complicated techniques such as rotation forests (RoF) and adaptive network-based fuzzy inference 
systems (ANFIS) have been developed. Recent developments in the fields of image identification 
and signal processing have centered attention on deep learning[8][9]. Remote sensing applications, 
such as road-network extraction, vehicle detection, semantic segmentation and scenario classification 
benefit tremendously from the implementation of artificial neural networks (ANNs) in image 
processing[10][11]. When it comes to scenario categorization, an ANN can outperform traditional 
methods.
Using a convolutional window and local connections, ANN can extract spatial information from 
high-resolution land-use/-cover (LULC) categorization[12][13]. ANN and textural characteristics 
may also have benefits in LULC mapping such as agricultural categorization when utilizing 
moderate-resolution images like Landsat. ANN may be used for LULC mapping in two ways: with a 
pre-trained ANN or with a fully trained ANN. In the first method, learned knowledge from natural 
pictures is used for LULC classification [14]. The problem is that it needs RGB pictures, which are 
impracticable since multispectral images often comprise more than four channels (RGB, 
near-infrared, and another band).
Satellite remote sensing has been crucial in advancing rice and food security programs, with the 
community making great strides. Agro meteorology parameters such as temperature, precipitation, 
soil moisture and solar radiation are used widely in current Decision Support Tools (DSTs), which 
includes operational monitoring of the crops.
To examine the LULC changes processes, researchers most often utilize the remote sensing 
techniques, GIS and combination of models. The models which are based on equations, Markov 
chains, statistics and cellular models are mostly used methodologies. The Greater Bay Area is one of 
China's fastest-growing areas, and it has emerged as a global economic, educational, and 
technological crossroads. The GBA underwent a metamorphosis as a result of fast regional 
socioeconomic growth and urban dynamics, which had a significant influence on the geographical 
pattern of LULC alterations. We used the Modules for Land-Use Change Simulation (MOLUSCE) 
plugin inside QGIS software to model the spatiotemporal transition potential and future scenario of 
LULC in this work. Artificial neural networks (ANNs) and Monte Carlo cellular automata (CA) 
modelling techniques are among the algorithms included in the MOLUSCE plugin.
Human-environment connections may be better understood by looking at concepts like Land Use and 

[30]. Systematic studies of remote sensing applications [31] have recently offered solid synthesis and 
scientific direction. None, however, concentrated on LULC categorization and LULCC detection 
using Landsat-8 and Sentinel-2 data.
Consequently, the primary objective of current research is to conduct an informative systematic 
review of papers that have been reviewed by peers and published in multiple journals from 2015, the 
years of MSI's to 2020, S2/launch on the usage of S2/MSI and L8/OLI spectral vegetation indices 
(VIs) and spectral bands to map the land use and land cover to monitor and identify changes in the 
landscape. This review covers the period from 2015 to 2020. Our specific objectives are as follows: 
(1) to provide scientific based guidelines as well as new insights for the future research by summing 
up scientific advancements for LULC detection and LULCC classification, as well as existing 
limitations and issues; and (2) to provide scientific based guidelines and new insights for the future 
research by summing up scientific advances for LULC detection and LULCC classification, as well 
as existing issues and limitations.
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Satellite remote sensing has been crucial in advancing rice and food security programs, with the 
community making great strides. Agro meteorology parameters such as temperature, precipitation, 
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includes operational monitoring of the crops.
To examine the LULC changes processes, researchers most often utilize the remote sensing 
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Human-environment connections may be better understood by looking at concepts like Land Use and 

Land Cover (LULC) [15]. Human activity, such as farming, ranching, mining, and other forms of 
resource extraction, are all examples of what is referred to as land use. While Land Utilize refers to 
how people use Earth's surface for their own purposes (such as the effects of anthropogenic 
activities), land cover focuses on physical aspects of our Earth's surface, such as water, plant, as well 
as soil. Deforestation, urbanization, and agricultural intensification are all examples of human-caused 
LULC changes (LULCC), whereas natural disasters like droughts, floods, and wildfires are examples 
of natural LULC changes [16]. As a result, LULC data can help us understand how humans and the 
environment interact [17].The use of reliable LULC data has grown in recent years to support the 
implementation of policies linked to natural resource management and environmental issues such as 
food security, climate change, deforestation, and agricultural dynamics[18][19]. This emphasizes the 
importance of thorough mapping for long-term development [20][21].Large Earth Observation (EO) 
data sets are regularly used to get information about LULC and LULCC, and remote sensing satellite 
data are a great source for producing up-to-date LULC classifications [16]. For example, utilization 
of remotely sensed Time Series provides for the best understanding of study area and underlying 
process like greenhouse gas emissions, deforestation and agricultural growth [22]. LULC 
categorization, on the other hand, is a complicated procedure impacted by a variety of factors 
[23].Phenology measures, for example, have been frequently constructed from intermediate 
resolution data to better comprehend phenological cycles and uncover small differences across 
related classes [24]. MODIS attempts have yielded useful outcomes [25]. Information at finer spatial 
resolutions is necessary for various applications. In general, medium-resolution (Landsat-like, 10–30 
m) sensors are the best for detecting most human contact, but low-resolution sensors are not effective 
for classification studies at the bigger scales, according to Chen and colleagues Comprehensive data 
on plant phenology may be gathered with the Landsat8 Operational Land Imager (L8/OLI) and the 
Sentinel-2 Multi Spectral Instrument (S2/MSI). There is now a new era for LULC and LULCC 
applications because of the rise in spatial resolution, open access rules, and systematic worldwide 
coverage of multi-source multi-temporal datasets with Landsat-like resolution. The two forerunners 
in moderate landscape mapping are Landsat and Sentinel [26]. L8/OLI and S2/MSI data are 
cost-effective methods for describing landscape processes at large scales because they share many 
technical properties [27]. The relevance of Landsat-8 and sentinel-2 data application for creating 
accurate mapping has been documented in the literature [28][29]. The data, however, have yet to be 
consolidated in order to give consistent recommendations on their impact on LULC classification 
methods, as well as to identify limits and viable techniques. To accomplish so, rather than relying on 
individual experience and skill, it is required to synthesis the collective knowledge on the subject 
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It is necessary and a necessity to have a timely and accurate forecast of yield at a broad scale in order 
to reduce climate risk and assure food security, particularly in light of climate change and the growing 
frequency of severe weather events. Rice is one of the most significant agricultural goods in the 
world, and Pakistan has a unique position in this regard due to the country's yearly output of more 
than 7.2 million metric tons of rice. Wheat is the most important agricultural product in the world. 
Because there are many diverse circumstances and limits, the evaluation of crop output plays a 
significant part in the process of formulating agricultural policy. Rice yield estimation is an important 
component of overall food security. Any shift in the values of the effective parameters has the 
potential to induce shifts in rice yield, which in turn will have an impact on the population's ability to 
maintain a stable diet. It’s impossible to overstate how important remote sensing has become in the 

last several decades. In order to monitor land surface dynamics, natural resource management, and 
the general status of the ecosystem, remote sensing sensors have been used from space [1]. Here, 
plant, soil, and water are the earth's surface elements that are being discussed. The spectral signature 
of a substance may be used to identify it if the sensing system has enough spectral resolution to 
differentiate it from other materials' spectral signatures. Based on this presumption, multispectral 
remote sensing may be carried out. Paddy rice field detection and selection is an essential part of 
getting more precise information about agricultural water consumption in order to efficiently manage 
fresh water resources [2].
Previous studies of land cover and ecosystems have used agricultural census data to map paddy rice 
fields at the regional and global scales. These datasets were created late in the 1980s and in the early 
1990s, and they were used to analyze global climate and greenhouse gas emissions. It has recently 
been common practice to combine agricultural census data up to national level to study paddy rice 
growing areas [3][4]. Self-sufficiency potential must be established in order to estimate rice output. 
When it comes to calculating rice output, farmers are often asked to provide information on their 
crop. An alternative approach is collecting a sample of rice grains and then multiplying that number 
by the overall harvest area, which gives an estimate of rice output. During harvesting times, both rice 
production estimate techniques are used. As a result, it is critical to know how rice fields are laid out 
in order to manage water resources and estimate gas emissions. It is important to know the land cover 
features of rice plants. During the rice life cycle, rice land coverage fluctuates. During the growing 
season, water covers almost the whole area of irrigated rice fields. There is a maximum rice 
vegetation coverage (the age of rice =2 months) and then a progressive decline until the time of its 
harvest [5]. Using satellite remote sensing technology to monitor land use and changes in land cover 
has been widely used and well accepted.
Time-series satellite photos of vegetation phenology serve a significant function in tracking 
vegetation and land-cover categorization because they can record vegetation information at various 
development phases. It has been widely used in paddy-rice monitoring and mapping during the 
previous several decades, particularly optical remote-sensing pictures.
Because of their high temporal and moderate geographical resolution, MODIS data have been used 
to map rice all over the globe. Using Landsat (30 m) data instead of MODIS may provide better 
accurate rice maps for smaller regions. Recent work has used the superior spectral and spatial 
resolution of Sentinel-2A MSI (Multispectral Instrument) data for mapping farms and other forms of 
land cover Utilizing high-resolution time-series imagery such as Quick Bird, IKONOS, and Rapid 
Eye, rice or crops have also been mapped. Because hyperspectral pictures are able to detect more 

crop types, they can enhance crop mapping accuracy.
Rice and other land-cover types have been mapped using Decision Trees (DT),Support Vector 
Machines (SVM), Random Forests (RF)[6][7].In order to increase classification accuracy, more 
complicated techniques such as rotation forests (RoF) and adaptive network-based fuzzy inference 
systems (ANFIS) have been developed. Recent developments in the fields of image identification 
and signal processing have centered attention on deep learning[8][9]. Remote sensing applications, 
such as road-network extraction, vehicle detection, semantic segmentation and scenario classification 
benefit tremendously from the implementation of artificial neural networks (ANNs) in image 
processing[10][11]. When it comes to scenario categorization, an ANN can outperform traditional 
methods.
Using a convolutional window and local connections, ANN can extract spatial information from 
high-resolution land-use/-cover (LULC) categorization[12][13]. ANN and textural characteristics 
may also have benefits in LULC mapping such as agricultural categorization when utilizing 
moderate-resolution images like Landsat. ANN may be used for LULC mapping in two ways: with a 
pre-trained ANN or with a fully trained ANN. In the first method, learned knowledge from natural 
pictures is used for LULC classification [14]. The problem is that it needs RGB pictures, which are 
impracticable since multispectral images often comprise more than four channels (RGB, 
near-infrared, and another band).
Satellite remote sensing has been crucial in advancing rice and food security programs, with the 
community making great strides. Agro meteorology parameters such as temperature, precipitation, 
soil moisture and solar radiation are used widely in current Decision Support Tools (DSTs), which 
includes operational monitoring of the crops.
To examine the LULC changes processes, researchers most often utilize the remote sensing 
techniques, GIS and combination of models. The models which are based on equations, Markov 
chains, statistics and cellular models are mostly used methodologies. The Greater Bay Area is one of 
China's fastest-growing areas, and it has emerged as a global economic, educational, and 
technological crossroads. The GBA underwent a metamorphosis as a result of fast regional 
socioeconomic growth and urban dynamics, which had a significant influence on the geographical 
pattern of LULC alterations. We used the Modules for Land-Use Change Simulation (MOLUSCE) 
plugin inside QGIS software to model the spatiotemporal transition potential and future scenario of 
LULC in this work. Artificial neural networks (ANNs) and Monte Carlo cellular automata (CA) 
modelling techniques are among the algorithms included in the MOLUSCE plugin.
Human-environment connections may be better understood by looking at concepts like Land Use and 
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using Landsat-8 and Sentinel-2 data.
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review of papers that have been reviewed by peers and published in multiple journals from 2015, the 
years of MSI's to 2020, S2/launch on the usage of S2/MSI and L8/OLI spectral vegetation indices 
(VIs) and spectral bands to map the land use and land cover to monitor and identify changes in the 
landscape. This review covers the period from 2015 to 2020. Our specific objectives are as follows: 
(1) to provide scientific based guidelines as well as new insights for the future research by summing 
up scientific advancements for LULC detection and LULCC classification, as well as existing 
limitations and issues; and (2) to provide scientific based guidelines and new insights for the future 
research by summing up scientific advances for LULC detection and LULCC classification, as well 
as existing issues and limitations.
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1.1 Landsat 8 /OLI Features

They are publicly accessible, interoperable, and capable of monitoring huge surfaces, S2/MSI and 
L8/OLI data are used as input for the LULC and LULCC systems all around the globe.
These mentioned sources are positioned in the sun-synchronous orbits and perform identical spectral, 
spatial, and angular observations.

Table 1 Characteristics of L8/OLI

Spectral Band

Coastal/Aerosol 442.9 nm (30 m)

Blue 482 nm (30 m)

Green 561.4 nm (30 m)

Red 654.6 nm (30 m)

NIR 864.7 nm (30 m)

SWIR 1608.9 nm (30 m), 2200.7 nm (30 m)

Panchromatic 589.5 nm (15 m)

Cirrus 1373.4 nm (30 m)

L8/ OLI Central Wavelengths



Rice Varieties (LULC) Classification using Artificial Neural Network through Landsat 8 OLI Image

06

1.2 Statement of Problem

1.3 Objectives

In addition to the Thermal Infrared Sensor (TIRS) and the Operational Land Imager (OLI), NASA 
and the United States Geological Survey's L8 satellite carries two sensors: the OLI (nine bands and 
30 m of the geographical resolution) and the TIR (two bands and 100 m of the spatial resolution). 
Both the radiometric and temporal resolutions are set at 16 bits. Each occupies a certain amount of 
space. It takes 185 and 180 kilo meters to get there. As part of the Copernicus Earth Observation 
program of the European Union's Europe Space Agency (ESA), two satellites (S2A/MSI and 
S2B/MSI) were deployed in 2015 and 2017. A 13-band sensor with a resolution of 10 to 60 meters in 
the SWIR ranges are installed on both S2 satellites. Sentinel-2 satellite provide data with a 5-days 
return cycle, sweep width of 290 km and 16 bits of the radiometric resolution. With the S2/MSI 
mission's spectrum capabilities, it provides new mapping choices. This range may be utilized to 
determine band ratio and construct a variety of indices. They can be helpful for identification and 
LULC categorization. Landsat's 16-day return duration and spatial and spectral resolution issues may 
lead to inaccurate results for LULC and LULCC analyses, however these benefits may outweigh 
these drawbacks. Landsat-8 and Sentinel-2 satellite images data provide a revisit period of around 
three days, enabling landscape monitoring with the clear observations in selected areas.

Existing traditional agricultural systems rely heavily on sparse ground-survey data, but multi-spectral 
as well as multi-temporal remote sensing pictures have shown to be effective instruments for 
assisting vulnerable systems by properly monitoring and predicting crop yields prior to harvest.
We need a simple, scale able and inexpensive method for timely forecasting rice yield across a vast 
area with publicly accessible data, which has the potential to be used to locations with infrequently 
observed data as well as globally to estimate crop yields.
 • Rice genotype classification
 • Rice genotype classification will help to identify the best varieties in terms of yield.
 • LULC will also help to identify the total area where rice is grown.

• The goal of this work is to look at machine learning architectures that have previously been used to 
identify LULC in satellite photos in order to increase detection performance and detect vegetation.
• The goal of this work is to look at machine learning architectures that have previously been used to 
identify LULC in satellite photos in order to increase detection performance and detect vegetation.
• To develop model for identification of rice varieties using Land use Land cover Classification.
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China and the rest of the world's food supply have long been a source of concern [32][33]. Rice, a 
staple meal in China, is grown in large quantities [34]. In other locations, however, rice production 
has lately been hampered by difficulties. With a rising population comes an increased need for rice, 
yet the acreage of rice fields has decreased due to urbanization, making it more difficult to meet that 
need. Rice production is also affected by environmental deterioration and natural disasters, such as 
floods and droughts. Government decisions need quick and accurate assessments of rice output, 
which may be obtained via the monitoring of rice-producing fields with high spatial–temporal 
resolution. Paddy rice farming has a significant impact on food and water security, greenhouse gas 
emissions and the health of human if accurately and timely rice paddy field maps with the fine spatial 
resolution are available. Both high time resolution and coarse spatial resolution optical images were 
used to create rice paddy field maps (e.g., Moderate Resolution Imaging Spectroradiometer) and high 
spatial resolution and low temporal resolution optical pictures (e.g. Landsat TM/ETM+). For the sake 
of rice paddy field mapping at precise spatial resolutions, data availability and image-based methods 
hindered accuracy and efficiency.
The ability to generate up-to-date, accurate land use/land cover (LULC) maps, as a result of 
ecosystem and land use changes, has become more practical because to advances in remote sensing 
techniques and expanded availability to satellite data [35]. When it comes to picking an algorithm, 
many people have difficulty. Site circumstances, available data, and spectral similarity across classes 
all factor into the algorithm selection process.
As Landsat 8 and Sentinel-2 multispectral instruments have recently been used to collect data on land 
use and land cover, new possibilities for remote sensing analysis have emerged. By combining 
various data sets, researchers may better classify landscapes and their underlying processes, such as 
deforestation and agricultural development, while also detecting changes in those processes [36].
It has been difficult to monitor large-scale rice farming due to poor radar coverage, low spatial and 
temporal resolutions of optical sensors, and a lack of systematic or open access radar. Sentinel-1 
C-band data with a dense time series and a moderate geographic resolution, freely available, opens 
up new possibilities for agricultural monitoring. It's particularly relevant in rice-growing regions like 
South and Southeast Asia, because the rainy seasons, when thick cloud cover is prevalent, are the 
most important times for rice cultivation. Sentinel-1A Interferometric Wide images (632) from a time 

• To evaluate the performance of the ANN.
• To map the results of ANN.

2. Literature Review
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series were used in this study to map Myanmar's rice expanse, crop calendar, flooding, and cropping 
intensity. Sentinel-1, Landsat-8 OLI, and PALSAR-2 were combined and categorized using a random 
forest method to provide an updated (2015) land use and land cover map. Sentinel-1 data were 
subsequently used to conduct phenological analysis of rice information over the whole country of 
Myanmar.
Climate change, which includes variations in temperature, precipitation, and CO2 levels, may have a 
negative impact on crop production [37]. Climate models can forecast regional temperature changes 
more accurately than they do regional precipitation changes, making temperature rises the most 
likely to have a negative impact on agricultural yields [38]. The average annual temperature has 
increased by 1°C over the previous century in places where wheat, rice, maize, and soybeans are 
cultivated and is expected to climb considerably more over the next century if greenhouse gas 
emissions rise any further (Nelson et al., 2010). Because of this, it is imperative that the impacts of 
temperature rise on global crop yields, including any geographical variability, be measured to 
identify the threat of world food security and then develop appropriate adaptation plans to feed a 
rising global population [39]. In developing and emerging countries, climate change has the greatest 
influence on socioeconomic [40]. Climate change's most evident expression has been extreme 
warming (Asseng et al., n.d.). Global temperatures are quickly increasing, and they might climb by 
20°C to 60°C by the end of the twenty-first century [41].
An ANN technique was utilized to identify 1779 Italian rice varieties, utilizing surveyed measures 
that are typically measured for the commercial categorization of a product, such as grain size and 
color. Based on Kohonen network, it was possible to differentiate classes that were indistinguishable 
in Principal Component Analysis (PCA) space, compared to the traditional PCA. According to 
classification and prediction, the best CP-ANN properly predicted more than 90% of test set samples 
[42].
To keep food production on schedule and analyses the influence of climate change on rice production, 
industry stakeholders need to conduct regular monitoring and mapping of rice (Oryza Sativa) 
development stages. It has been common practice in Indonesia to conduct expensive field surveys to 
check rice growth. The approach proposed in this study uses satellite images and machine learning to 
extract multi-temporal rice phenology (vegetative, reproductive, and ripening) and bare land 
mapping. We trained the models using a wealth of ground validation data gathered between 2014 and 
2016. Pre-installed cameras in Indonesia were used to gather this ground validation data. A total of 
five machine learning techniques were employed to categorize rice development stages and barren 
land using random forest (RF), support vector machine (SVM), and artificial neural networks (ANN) 
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[43].
It is possible to fill up the data gaps with trustworthy spatial data from regional to global sizes using 
remote sensing technologies. Sentinel satellite missions [44] are examples of Earth observation 
missions that monitor Earth's surface on a regular basis with a variety of spectral and spatial 
resolutions in order to better understand and address food security issues [45]. There have since been 
a number of remote sensing investigations on rice phenology in various environments, including 
irrigated and rain-fed regions. Different sensors have been suggested for the detection of rice 
phenology using a variety of broad and narrow-band vegetation indices, such as the normalized 
difference vegetation index (NDVI) and the enhanced vegetation index (EVI). A root-mean-square 
error (RMSE) of 12.1 days on planting date was achieved using MODIS data with 500 m resolution 
and a wavelet filter, according to [46]. Rice transplanting stages may be detected using EVI and Land 
Surface Water Index (LSWI) generated from MODIS using 8-day composite pictures, according to 
Xiao and colleagues [47]. While their results are close to those of a local ground truth database, their 
precision dwindled across mountainous terrain, as seen by their lower accuracy. Because the 
Landsat-8 OLI sensor has increased performance in radiometric and spectral resolutions, it is capable 
of mapping paddy fields with more precision than MODIS and Landsat-7 in subtropical areas. Even 
in tropical and subtropical regions, fast land use change caused by natural catastrophes (such as 
tropical cyclones, earthquakes, landslides, floods, and volcanic eruptions) and changing weather, as 
well as urbanization and recurring cloud cover, influence Landsat-8 OLI accuracy[48]. Radar 
imaging, such as Synthetic Aperture Radar, Sentinel-1A, and RADARSAT was commonly utilized to 
overcome weather restrictions (e.g. cloud and shadow cover). Access to RADARSAT, on the other 
hand, might be an expensive burden for nations in emerging stages to deploy. As a result of this, the 
analysis necessitates expensive and time-consuming clustering of clean and time-series data by a 
qualified individual or utilizing existing knowledge of the subject region.
Optical and radar data may be used to map crop kinds and estimate biophysical characteristics, 
particularly with the Copernicus program's unparalleled volume of free Sentinel data. It is possible to 
monitor crops every five or ten days using these databases, which are guaranteed for decades. 
Understanding the temporal changes of the remote sensing signal of various crops in a particular 
location is essential before creating operational monitoring approaches. SAR and multi-temporal 
hyperspectral pictures recorded at varying time intervals may both be used for automatic change 
detection studies in remote sensing technology [49]. These photos are compared and a categorization 
is made between the modified and unaffected regions. Noises in the RS pictures, on the other hand, 
weaken current algorithms[50]. Convolutional neural networks (CNNs) are used in the deep learning 
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framework to recognize burned regions automatically utilizing every fresh SAR picture obtained 
during the wildfires and to describe the temporal backscatter fluctuations using all existing pre-fire 
SAR time series. For the Elephant Hill Fire in British Columbia, Canada; the Camp Fire in the United 
States of America; and the Chuckegg Creek Fire in Alberta, Canada, Sentinel-1 SAR backscatter was 
able to identify wildfires and document their temporal evolution. The CNN-based deep learning 
architecture can better discriminate charred regions than the standard log-ratio operator. Spaceborne 
SAR time series with deep learning may play a big role in near real-time wildfire monitoring when 
the RADARSAT Constellation Missions are launched in 2019 and SAR CubeSat constellations are 
launched [51].
Ensemble-based techniques have emerged as the most widely used and most effective methods for 
classifying land cover across several sensors and time scales in the last few years. Deep learning (DL) 
and machine learning (ML) [52]. The SVM is outperformed by several approaches [53]. Deep 
learning is a sophisticated machine learning technology that may be used to solve a broad variety of 
image processing and computer vision challenges, as well as natural language processing tasks. 
When dealing with large data, it is important to utilize as much data as possible in order to replicate 
human vision and offer meaningful information. It is easy to find picture categorization models, 
frameworks, and reference imagery databases to test against. There has been an increase in the use of 
DL for RS image processing during the last several years [54]. A number of different land cover 
categories, such as roads and buildings, may be extracted from satellite photos using DL, including 
optical (hyperspectral and multispectral imaging), as well as radar images. For RS tasks, 
convolutional neural networks (CNNs), deep belief networks (DBNs), and recurrent neural networks 
(RNNs) with long short-term memory models have previously been tested [55]. Classification, such 
as land cover or object identification, is often performed on a single date picture in most research 
using DL for RS, but this is not always the case. In order to properly identify certain land cover 
classes, such as crop kinds, multitemporal photos are often necessary. A large-scale crop map is 
created using many remote sensing images. For the creation of the f phenological feature set, we used 
harmonic analysis to extract harmonic phenological features and harmonic backscattering features 
from images taken by Landsat-8 and Sentinel-2, and then combined them with spectral features from 
both those satellites' images and those taken by Sentinel-1 to get the normalized difference vegetation 
index time-series.
The following issues must be addressed when utilizing ANN for large-scale crop mapping using 
multitemporal satellite images. Pixels in a satellite picture are first and foremost physical. This is 
because the backscatter intensity and phase of the backscatter in various polarizations are different 
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for each pixel of the spaceborne SAR imaging than for each pixel of the optical imagery, and each 
pixel of the optical imagery might be affected by clouds and shadows. Both data sets are 
multitemporal, but their spatial resolutions are quite different. There are several reasons why 
multitemporal multisensory satellite data must be fused in ML implementation for land cover and 
crop classification.

There are different material and methods used to conduct the research as described below.

3.1  General Overview of Architecture
For the categorization of crop kinds using multitemporal satellite images, a four-step architecture has 
been suggested. 1)Preprocessing, 2) postprocessing 3) Supervised classification and 4) Geospatial 
analysis are the four stages (Fig. 2).
Optical satellite images may be polluted by clouds and shadows, missing values in the picture must be 
dealt with. Because wide range of classifiers only take valid pixel values ass input, a preprocessing 
step to impute (or fill gaps) missing data is required. This method is carried out at the architecture's 
level I. The following phase, which is the focus of this letter, is supervised categorization (level II). RF 
architecture is proposed. Levels III and IV are for enhancing the categorization map using accessible 
geographical layers and creating high-level deliverables. Fig. 1 shows the proposed methodology.

Crop area estimate and crop rotation area estimation are examples of the latter. The next sections go 
through each of these architectural levels in further depth.

3. Material and Methods/Model and Equations/Modelling

Fig.1  Proposed Methodology
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3.2  Reprocessing
We use self-organizing Kohonen maps (SOMs) for optical image segmentation and subsequent 
missing data restoration in a time-series of satellite imagery for preprocessing. SOMs are trained 
independently for each spectral band using non-missing data. Missing values are recovered usinga 
unique algorithm that replaces the missing components of the input sample with the weight 
coefficients of the neuron. The number of cloud-free scenes accessible for each pixel from optical 
images is determined, and these two layers are utilized for a more advanced postprocessing approach 
(at level III) to enhance the resultant classification map.

3.3  Image Classification
Using a variety of satellite datasets, this research compares the map accuracies of the SVM and RF 
classification algorithms employed in paddy rice land-cover studies. Supervised learning classifier 
SVM doesn't need any parameters or distributions to work. The various training samples in an input 
space are projected onto a high-dimensional space using a kernel function that enables classes to be 
separated. It has been stated that the RF method can handle larger training sets than typical classifiers 
in order to achieve map accuracies that are greater than traditional classifiers.

3.4  Post processing and Geospatial Analysis
We created numerous filtering methods based on available information on the quality of input data 
and field boundaries, such as parcels, to enhance the 
quality of the final map. These filters use a pixel-based 
categorization map and custom rules to account for 
multiple plots (fields) inside a parcel. We were able to 
create a clear parcel-based categorization map as a 
consequence. Data fusion using multisource 
heterogeneous information, such as statistical data, vector 
geospatial data, socioeconomic data, and so on, is 
provided at the ultimate level of data processing. The 
Below diagram explain four steps I) Data collection or 
sample points II) Application of Artificial neural network 
giving band information III) Mapping the output IV) Area 
calculation.

Fig.2  Four-level hierarchical ML model 
for satellite data classification
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3.5 Study Area
We use pictures taken by the Landsat-8 satellite to solve the issue of land cover and crop 
categorization in the Rahim Yar Khan area of Pakistan. Major agricultural crop (rice) is among the 
classification studied. It covers a broad area with a wide range of land cover types and agricultural 
crops. The area is large enough to be regarded indicative for the spread of technology across the 
nation. The chilly season starts in December and lasts until the end of April.

3.6  Data Sample

Table 2  515 Rice Variety

Table 3 Laal86 Rice Variety

Table 4 Super Rice Variety

Table 5 White86 Rice Variety
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3.7 Feature Sets
Multi-temporal characteristics based on crop phenology were created in order to investigate the 
potential of optical images from Sentinel-8 to discriminate land cover classes and to pick the most 
important features for increasing classification accuracy. Crop mapping input data were examined 
using a variety of feature sets and optical feature combinations. The classification performance or 
uniqueness of six spectral indices was considered while selecting them from the literature. The 
features were extracted using ENVI and SNAP software. In Fig. 3, we used the Features sets, features 
and numbers of features for crop mapping. We utilized the 400 samples in training for each class400 
X 4. And 20% of the sample data we used for the testing of model.

3.8 Machine Learning
Machine learning is an AI branch that focuses on the creation of computer programs that have data 
access by providing a system with the capacity to learn and improve automatically. Finding patterns 
in a database without human interaction. Machine learning algorithms are further classed as 
Supervised, Unsupervised, and Semi-Supervised; all of these learning approaches are employed in 
various applications. Machine learning is a subset of Artificial Intelligence in which computers 
automatically learn from their operations and fine-tune themselves to provide better results.
The first one thing that is comes to mind for the most of people when they hear the word "artificial 
intelligence" is a machine. Based on the idea that human intellect may be characterized in a manner 
that machines can simply duplicate it and perform tasks is known as "artificial intelligence. Fig. 4 
consist of two phases. Phase 1 shows that how training data will perform and how many steps 
involved in it and Phase 2 shows that how predict the model and shows the predicted data.

Fig. 3 Different feature sets and combinations of optical features for crop mapping
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3.8.1  Supervised Machine Learning 
Data is labeled and categorized, supervised learning methods are applied. The algorithms learn from 
earlier inputted data, known as training data, and utilize this analysis to predict future occurrences of 
any new data within the established categories. 

3.8.2  Unsupervised Machine Learning
Unsupervised learning techniques are utilized when we are unsure of the eventual outputs and do not 
have access to categorization or labeled outputs. These algorithms investigate and develop a function 
to describe entirely unlabeled and concealed patterns. As a result, there is no proper output; instead, 
it analyses the data to reveal undiscovered structures in unlabeled data.

3.8.3  Semi Supervised Machine Learning
These algorithms often process labeled and unlabeled data, with the unlabeled data quantity being 
greater than the labeled data amount. These models have been shown to increase learning accuracy 
in systems. In an ideal world, all data would be organized and categorized before entering a system. 

3.9  Validation and Accuracy Assessment
The observation regarding the reliance on remote sensing data without sufficient ground truth data for 
validation is a valid concern while remote sensing data is a powerful and invaluable for large-scale 
analysis, indeed has limitations, particularly when it comes to validation against on-the-ground 
realities. However, several factors were considered in this study to mitigate the potential impact of 

Fig.4 Machine Learning Process
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this limitation.
First, the study employed a rigorous accuracy assessment protocol using existing ground truth data 
from previous studies and publicly available datasets. While direct, contemporary ground truth data 
collection was not feasible within the scope and resources of this research, the use of well-established 
reference datasets provided a reliable means to validate the remote sensing classifications. These 
datasets, which include historical land cover maps, agricultural census data, and other relevant 
sources, have been widely used in the literature and are considered robust for validation purposes. 
Secondly, advanced remote sensing techniques, such as the use of high-resolution satellite imagery 
and machine learning algorithms, were implemented to enhance the accuracy of land use and land 
cover (LULC) classification. These methods allow for the extraction of fine-scale features that 
closely approximate ground conditions, reducing the reliance on extensive ground truth data. The 
integration of machine learning models, such as Random Forest and Support Vector Machines, 
provided a significant improvement in classification accuracy, as these models are particularly adept 
at handling the complexities of remote sensing data.
The study also incorporated cross-validation techniques to ensure the robustness of the results. By 
splitting the dataset into training and testing subsets, the models were evaluated on their ability to 
generalize beyond the initial training data. This approach helped to identify potential overfitting and 
ensured that the models produced reliable and accurate classifications, even in the absence of 
extensive ground truth data.

3.10 LULC
The vast majority of usable land today is being put to use in a way that directly impacts human needs. 
Aside from the intense usage of the land, the land is also changing and altering with time. What was 
farmland 10 years ago is now likely to be urban land. A plantation has likely taken over what was 
once forest land. As land use and land cover (LULC) change at such a fast pace, it's become necessary 
to quantify these shifts in figures and maps so that we may better comprehend and use this data.
Though they're commonly used interchangeably, land usage and land cover signify quite different 
things. Activities that take place on a parcel of land are known as "land usage." A land cover, on the 
other hand, refers to the kind of vegetation that grows on the ground. 

3.10.1  LULC change detection
Land use and land cover change (LULC) is a very complicated process that can take many different 
shapes and progress at varying rates and magnitudes. Governments around the world have devoted 
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entire bureaus to tracking and analyzing these changes. Studies on LULC change detection are 
typically conducted in conjunction with other research on a related issue. The National Land Cover 
Database (NLC) of South Africa, for instance, was created using geo rectified, single-data, 1:250,000 
scale LANDSAT Thematic Mapper (TM) satellite imagery from the years 1994–1955. The first 
significant attempt to map the LULC of India was made as part of the LULC 2005-ISRO 
Geosphere-Biosphere Program LULC Dynamics Project. Using multi-temporal AWiFS datasets, it 
created a 1:250,000 scale map of the entire nation. The majority of LULC studies use images from 
satellites like Landsat (TM), Carto sat, LISS series, and others.

3.10.2  Integration of Additional Satellite Data Sources
The current study primarily utilizes Landsat-8 imagery, which has been effective in mapping rice 
crops within the specific region. However, integrating additional satellite data sources like MODIS 
could indeed enhance the robustness of the models by providing higher temporal resolution and 
complementary spectral information. The fusion of data from multiple satellites can improve 
classification accuracy, particularly in areas with frequent cloud cover or other data limitations. 
Future research could explore combining MODIS data with Landsat-8 to achieve a more 
comprehensive temporal analysis and reduce gaps caused by missing data.

3.11 Structure of ANN
Multispectral assessment of satellite images data has been utilized to create thematic LULC 
inventories for a variety of products such as crop characterization, urban planning and forest 
ecosystem categorization. ANNs were initially intended to be Tools for image analysis and input 
evaluation that mimic the brain's neuronal storing and cognitive functionalities. ANN techniques 
offer a particular, they have a plus over scientific classification techniques in that they are 
non-parametric and require minimal or no prior information of the input feature estimation method. 
Based on ERDAS IMAGINE 9.0, this categorization approach is more viable and computationally 
efficient. Our automatic ANN classification system was made up of a supervised multilayer 
perceptron (MLP) network module and Kohonen's self-organizing mapping (SOM) neural network 
module. While several ANN methods have been utilized in a variety of LULC classification 
applications using remotely sensed data, supervised multilayer perceptron (MLP) and unsupervised 
SOM neural networks are the most often used ones. Fig. 5 depicts MLP networks, which generally 
consist of one input layer, one or more hidden layers, and one output layer, are often trained using the 
supervised back propagation (BP) technique.



Fig. 6 depicts the Kohonen's artificial neural network model. Developed as an unsupervised 
clustering artificial neural network (ANN), generates a one- or two-dimensional map of the 
associations among input data patterns.

3.11.1  Parameter Selection
The network configuration, ANN involves the selection of a set of characteristics for the training 
procedure, including the learning rate, dropout rate, batch size, and the number of training epochs. 
Selecting the ideal set of input values is difficult and necessitates preliminary research. A grid search 
was used to find the best arrangement for carrying out all trials by using the parameter and selected 
value (Table 6).
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Fig. 5 An example structure of  Neural network

Fig. 6 The structure of Kohonen’s Self-Organization Mapping neural network.
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3.11.2  Training and Testing of ANN
The amount of training parameters varies depending on the network and method. The following MLP 
network parameters were necessary in our investigation: 
 1) Starting learning rate, 
 2) End learning rate, 
 3) Momentum 
 4) Epochs. 

3.11.3 Neural Network Classification and Discussions
Using USGS tools, various picture subsets were initially picked from image for each class. We 
wanted to collect picture subsets from both homogenous and diverse locations. Image subsets were 
allocated to categories with a lot of spectral variation within the class, such the urban and agricultural 
sectors. The chosen photo subsets were processed using the feature transformation sub-modules of 
the neural classification system. The learning and evaluating patterns were extracted from the picture 
subsets using this sub-module, coded, and stored as testing and training pattern data for each class. 
Each sampled pattern's appropriate class label was provided via MLP classification. In this 
application, 420 learning pixels and 45 evaluating pixels were picked for each of the six classes, 
totaling 3360 learning pixels and 360 evaluating pixels. During training, the network was only 
subjected to the 3360 training patterns. 
Many MLP tests with various hidden nodes and training settings. An error file was created after each 
iteration to capture the training and testing failures. The appropriate network design and training 
parameters were found using these error files. The ideal MLP network architecture in this scenario 
was discovered to be a single layer network with 15 hidden nodes. The best MLP training was 
obtained when the following parameters were used: 1) 15,000 epochs, 2) 1.5 starting learning rate, 3) 
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Table 6  Training parameters

Parameter

Starting Learning Rate 1.5

End Learning Rate 0.15

Decaying Learning Rate True

No. of Layers 3

Momentum 0.08

Parameter



0.05 end learning rate 4) momentum (0.08). The well-trained MLP network was fed into the network 
generalization sub-module and utilized to categories the TM picture into the six LU/LC classes 
depicted in Figure 7.

3.12 Performance Evaluation

3.12.1  Accuracy
Classification performance is measured using either accuracy or its inverse error rate. Accuracy is 
defined as the percentage of examples that were correctly classified, while error rate is the percentage 
of examples that were incorrectly classified.

3.12.2  Precision &Recall
When it comes to evaluating text mining performance, there are two metrics in wide use: precision 
and recall. Precision is the number of positive examples correctly labeled divided by the total number 
of instances in which those positive examples are encountered. Recall is the number of positive 
examples that are actually found and can be distinguished from all other instances. The following 
formulas illustrate this concept.

4  Results and Discussion
This section contains the results of using the neural networks approach for LULC mapping. The 
analysis was carried out in three stages: pre-processing, ANN training, and LULC mapping. During 
the applications, Landsat 8 images were used. Sheikh Pura in Pakistan is the location of the research. 
The ANN classifier was created using the TensorFlow library. The ANN classifier was trained until it 
achieved the lowest possible error. Based on the confusion matrix measure, the accuracy we achieved 
using NN o remotely sensed training data is 98%, while accuracy of testing data is 91%. The best 
performance was obtained following a series of trials with various training functions or varying 
numbers of neurons in the hidden layers. 
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Accuracy =
TP+TN

TP+FN+TN+FP
(1)

Precision =
TP

TP+FP
(2)

Recall =
TP

TP+FN
(3)



The classification results demonstrated that the trained MLP network generalized well. The 
previously mentioned cross-validation training strategy was beneficial in terms of preventing 
over-fitting.
In general, ANN classifier performance accuracy is good in classes with a large area compared to low 
performance in classes with small areas. According to the regional level of study, the classifier's 
performance is fairly good. Fig. 7 shows that LULC map image used to classify Landsat 8 image 
based on TensorFlow and ANN classifier.

The following are some key findings from this study: 
An automated Identification techniques system was created and demonstrated to be appropriate for 
land use / cover mapping using satellite data, particularly when the pattern of the training dataset is 
atypical.
This research offered a good study to validate the automated ANN's superior classification skills over 
other systems for LULC applications. Based on the findings of this study, the supervised MLP 
networks can be used in typical Land use land cover mapping applications to achieves better 
classification results, and unsupervised MLP model can be used to provide aid in analyzing the 
satellite images data and the features of remotely sensed data.
MLP is extremely helpful in the less time-consuming and crucial work of collecting and evaluating 
remotely sensed training data for classification of complicated LULC. 
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Fig.7: LULC MAP



Super rice, 515, laal86, white86, duckweed, open water, buildings, and others were among the several 
land-cover types that were surveyed. The first Lansat-8 photograph was taken in June of that year. 
Backscatter was remained high in rice fields since they were either occupied by other crops or were 
in the process of being prepared. Paddy rice A is the name given to the second accessible picture in 
July (2021) that shows a decrease in backscatter due to floods or freshly replanted rice crops. Paddy 
rice B refers to rice fields inundated after June 18, 2021, whose decline in backscatter was only 
noticed in the third available photograph (July 1). After the third accessible photograph, the 
backscatter of rice subtypes is consistent with one another (25 July). However, in June of 2021, two 
photos were made accessible (01 June and 08 June). More pixels of Paddy A were captured in 2021 
because of the wider window available for Paddy A capture. The relative efficacy of ANN algorithms 
in rice mapping utilizing single optical data throughout and between seasons was proven using 
pixel-based accuracy evaluation. Each dataset yielded similar results from ANN. The linear 
correlation between VH and VV polarizations may be inferred from the backscatter patterns' 
temporal consistency. The rise in satellite observations in 2021 is to blame for this (Landsat-8) when 
compared to other datasets. This is in line with the results obtained by combining VH and SI.

Fig. 8 shows the learning rate, training accuracy and testing accuracy on USGS data set using 1 
hidden layer. By using ANN classifier achieved maximum 98.69% training accuracy, 50% testing 
accuracy.
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Fig. 8: ANN Classification using 1 Hidden Layer



Fig. 9 shows the learning rate, training accuracy and testing accuracy on USGS data set using 2 
hidden layers. By using ANN classifier achieved maximum 99% training accuracy and 91% testing 
accuracy.

Fig. 10 shows the learning rate, training accuracy and testing accuracy on USGS data set using 3 
hidden layers. By using ANN classifier achieved maximum 99.23% training accuracy and 85% 
testing accuracy.
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Fig. 9: ANN Classification using 2 Hidden Layers

Fig.10 ANN Classification using 3 Hidden Layers



Fig. 11 shows the learning rate, training accuracy and testing accuracy on USGS data set using 4 
hidden layers. By using ANN classifier achieved maximum 97.69% training accuracy and 
75.87%testing accuracy.
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Fig.11 ANN Classification using 4 Hidden Layers

Fig.12  ANN Classification using 5 Hidden Layers

Layer (type) Output shape Parameters 

conv2d_1 (Conv2D) (None, 96, 96, 32)         2432 

conv2d_2 (Conv2D)     (None, 96, 96, 32) 9248 

conv2d_3 (Conv2D) (None, 96, 96, 32) 9248   

batch_normalization_1 



Fig. 12 shows the learning rate, training accuracy and testing accuracy on USGS data set using 5 
hidden layers. By using ANN classifier achieved maximum 98% training accuracy and 78% testing 
accuracy.

Fig. 13 shows the learning rate, training accuracy and testing accuracy on USGS data set using 6 
hidden layers. By using ANN classifier achieved maximum 98.69% training accuracy and 62.25% 
testing accuracy.
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Fig. 13 ANN Classification using 6 Hidden Layers

Fig.14 ANN Classification using 7 Hidden Layers



Fig. 14 shows the learning rate, training accuracy and testing accuracy on USGS data set using 7 
hidden layers. By using ANN classifier achieved maximum 99.23% training accuracy and 62.25% 
testing accuracy.

Fig. 15 shows the learning rate, training accuracy and testing accuracy on USGS data set using 8 
hidden layers. By using ANN classifier achieved maximum 99.23% training accuracy and 85.00% 
testing accuracy.
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Fig.15 ANN Classification using 8 Hidden Layers

Fig.16 ANN Classification using 9 Hidden Layers



4.1  Discussion
This work presented an effective approach for mapping rice in complicated landscapes. To extract the 
spectral/spatial and temporal properties of rice fields, deep learning and phenological metrics were 
coupled. Combining deep learning with phenological metrics may significantly increase remote 
sensing picture classification accuracy, particularly in rice mapping and crop land identification.
Crop area mapping utilizing remote sensing photography is critical for agricultural output. Rice, on 
the other hand, is often mapped by extracting time-series characteristics from Landsat data. Landsat8 
spatial resolution is only appropriate for assessing big rice-growing regions and is insufficient for 
studying rice-growing areas in complicated landscapes. The current investigation was done using 
mid-range spatial resolution data, which caught the finer details that low-resolution data lost, but at a 
cheaper image-acquisition cost and over a greater area. The mid-spatial resolution categorization had 
no negative impact on accuracy (which topped 93.56%). 
Our technique produced an accurate paddy rice map, although it has significant drawbacks. First, the 

Fig. 16 shows the learning rate, training accuracy and testing accuracy on USGS data set using 9 
hidden layers. By using ANN classifier achieved maximum 99.00% training accuracy and 73.00% 
testing accuracy.

Fig.17 shows the learning rate, training accuracy and testing accuracy on USGS data set using 10 
hidden layers. By using ANN classifier achieved maximum 99.00% training accuracy and 71.00% 
testing accuracy.
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Fig.17ANN Classification using 10 Hidden Layers



ANN structure chosen is determined by the research area's circumstances and the resolution of the 
remote sensing data. By modifying the activation function and parameter parameters, the current 
ANN model is optimized. The approach is appropriate for rice mapping in complicated landscape 
regions with fragmented rice distributions.
As a result, the ANN structure and optimum parameters must be adjusted to the circumstance. 
Second, the precision of phenological measurements is affected by the weather. Traditional 
agriculture desynchronizes crop phenological phases, and empirical knowledge-based judgment is 
intrinsically ambiguous. Third, due to the picture size difference between the pre-trained dataset and 
the fine-tuned dataset, the pre-trained data is compressed from 256 by 256 to 28 by 28, resulting in 
some information loss. Due to training data size constraints, we focused on the benefits of ANN in 
mining picture topology and texture characteristics, whereas the loss of color information in 
compression was disregarded.
Finally, the classification procedure is incapable of extracting and utilizing the deep properties of 
time-series data pictures. To dig further, the approach must concurrently understand the features of 
time-series characteristics and spectral/spatial characteristics.
The spectral, spatial, and temporal feature extractions should be combined into a single model in 
future study. 

4.2  Temporal Analysis and Seasonal Variations in Cropland Dynamics.
The current study does acknowledge seasonal variations, but a more detailed temporal analysis could 
provide further insights into cropland dynamics, particularly in understanding the phenological 
stages of different crops. Such an analysis would involve examining changes over multiple growing 
seasons and correlating these changes with climatic and agricultural practices. This approach could 
help in predicting future trends and identifying the optimal times for satellite data acquisition. The 
decision not to pursue a detailed seasonal analysis in this study was primarily due to constraints 
related to data availability and processing capacity. Conducting a high-resolution temporal analysis 
would require access to more frequent satellite imagery, which may not always be available for all 
regions or time periods of interest. Additionally, the increased data volume and complexity would 
necessitate more advanced processing techniques and greater computational resources, which were 
beyond the scope of this study.

5  Conclusion
Due to the vast amount of accessible remote sensing satellite photos in recent decades, there has been 
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a tremendous demand to build machine learning classifiers. Classifiers take the role of the laborious 
and time-consuming digitizing procedure. Furthermore, there is a strong need to improve the 
performance accuracy of classifiers. The goal of this paper is to use neural networks as a 
machine-learning approach for LULC mapping. The Landsat 8 picture was captured using USGS and 
processed in Google Cloab&QGis for this study. The Sheikh Pura region of Pakistan was chosen as 
the research location for the analysis. The classifier was created using the TensorFlow ML framework 
in Python. In the classifier development step, a feedforward neural network structure is used. The 
training dataset was created using around 18050 sample points. The constructed classifier achieved 
an overall accuracy of 96% based on numerous trials. In general, the total accuracy grows in lockstep 
with the number of neurons in the first hidden layer. The findings demonstrate the ANN classifier's 
capability across several LULC classes. To summarize, the results demonstrate that using the ANN 
classifier effectively performed LULC mapping from Landsat 8 satellite photos in a reasonable 
amount of time with good performance accuracy. The ANN classifier may be used to categorize 
multispectral satellite pictures in regional and environmental studies. To create ANN classifiers for 
LULC mapping, the strong TensorFlow platform as an ML library is highly suggested. ANN 
classifiers can generate LULC maps quickly and with good results.

6    Future Work
Although the primary focus of this study was on satellite imagery and machine learning models for 
LULC classification, it is essential to recognize that climatic factors can have substantial effects on 
crop growth and land use patterns. To address this, the study incorporated meteorological data, such 
as temperature and precipitation records, from local weather stations to provide contextual 
information. However, the detailed analysis of extreme weather events and their direct impact on 
agricultural land use was not the primary focus. Future research will incorporate a more detailed 
climatic analysis. This could involve:
 • Long-Term Climate Data: Analyzing long-term climatic trends and their 
correlation with agricultural practices. This approach would help in understanding how changes in 
climate patterns impact crop yields and land use over extended periods.
 • Extreme Weather Analysis: Investigating the effects of specific extreme weather 
events, such as droughts, floods, and heat waves, on crop dynamics and land use changes. This 
analysis could be facilitated by integrating high-resolution weather data and historical event records 
with LULC data.
 • Model Integration: Combining remote sensing data with climate models and 
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simulations to assess the potential impacts of future climate scenarios on agricultural systems. This 
integrated approach could provide a more comprehensive understanding of the interplay between 
climate factors and land use.
Future works will expand the scope by employing more effective technology such as other algorithms 
than those that are used, take advantage of cloud computing as well as further optimize the existing 
models. These endeavors will be geared towards achieving quick processing and low resource 
consumption without compromising the quality of results obtained from the predictive models.
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