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1. Introduction

The area of medical image analysis has genuine obstacles, such as small data sets, complicated 
fine-tuning, and choosing the right architecture. This paper proposes a CancerVisionNet model based 
on the convolutional neural network (CNN) architecture with many layers to extract and classify 
features from cancer images. To train the CancerVisionNet model and avoid overfitting, data 
augmentation is carried out using a dataset consisting of 220,025 images. The proposed 
CancerVisionNet model is evaluated on the PatchCamelyon dataset. Its remarkable area under the 
receiver operating characteristic (ROC) curve (AUC) measure is about 0.9. Compared to the other 
studies, the CancerVisionNet model stands out with a higher accuracy (95.4%). Moreover, this work 
demonstrates the potential of CNNs in medical image analysis, providing an effective approach to 
enhance classification accuracy and paving the way for further advances in the field. Although the 
results of this study pertain to histopathology and the PatchCamelyon dataset, the potential for a 
broader application awaits cross-domain validation. Future research works can include exploring 
alternative architectures and scalability to larger datasets.

The role of medical images in patient care is critical, but resource constraints, a lengthy 
decision-making process, and the need for the second opinion can hamper the process. Medical 
imaging applications such as pathology urgently require improved and more precise image 
classification. Histopathological images play a crucial role in the diagnosis and assessment of the 
aggressiveness of diseases such as cancer, as well as in determining whether they are benign. 
Histopathology involves examining biopsied tissue samples microscopically to diagnose illnesses 
[1], making it an essential tool for physicians to plan patient care. Histopathology image 
classification is a specialized area of study for pathologists. A veteran pathologist can help with the 
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classification of histopathology images. Over the past decade, the number of practicing pathologists 
has decreased by 17.5%, while the workload has increased by 41% [2]. Consequently, there is an 
urgent need to equip pathologists with an autonomous classifier, capable of accurately classifying 
histopathology images to help them in their work. 
Machine learning is a cutting-edge technique in the area of artificial intelligence that enables the 
automated extraction of information from images. While in deep learning, neural networks are used 
with numerous hidden layers to achieve the same goal. Recent advancements in machine learning 
have made it feasible to create an algorithm that can automatically extract visual features [3], One 
potential use of deep learning is image classification, where it is used to automatically categorize 
images. A convolutional neural network (CNN) is trained to classify images by adjusting its weights 
according to the training dataset. The primary advantage of CNN is that it can automatically map 
useful aspects of images for classification without any further programming. CNNs have been shown 
to be effective in classification in numerous medical fields, including the detection and classification 
of diabetic retinopathy [4], the detection of Alzheimer's disease [5], and the identification of skin 
lesions [6, 7].
 Classifying images according to predetermined labels is an important procedure in many disciplines, 
including medicine. We might think of deep learning algorithms as self-learning programs that figure 
out how to differentiate between various image classes without any assistance from human feature 
engineers. We are inspired by Fukushima’s proposed convolutional neural networks (CNNs) as the 
first effort to construct an autonomous classifier capable of learning to discriminate between classes 
[8]. However, the quantity and complexity of the dataset at the time of this endeavor limited its 
success. AlexNet, a CNN architecture created by Krizhevsky, Sutskever and Hinton [9] that achieved 
a 16% error rate, beat out the runner-up, which achieved a 25% error rate, in the “ImageNet Large 
Scale Visual Recognition Challenge” ILSVRC competition [10]. Fig. 1 shows a typical feedforward 
artificial neural network, such as CNN.
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In the realm of image classification, challenges such as overfitting can emerge, especially with 
feed-forward neural networks that require a significant number of training images. Such limitations 
can restrict the use of CNNs in specific domains, such as natural image categorization [11]. However, 
the solution lies in the concept of transfer learning, which has gained prominence as a distinct field. 
Transfer learning involves repurposing weights from a pre-trained network that was initially 
designed to analyze an entirely different large dataset. This approach has the potential to 
revolutionize healthcare by addressing the data dearth in medical image categorization using CNNs. 
Chollet [12] names feature extraction and fine-tuning as the two most common approaches to transfer 
learning. Yosinski, Clune, Bengio and Lipson [13] emphasized that the usefulness of these methods 
is proportional to the quantity of the dataset. When the dataset is sufficiently extensive, it allows for 
fine-tuning of the original layers; conversely, if the dataset is smaller, these layers can be repurposed 
for feature extraction. Another crucial consideration is the degree of similarity between the source 
and destination datasets. In alignment with these concepts, our study opts to prioritize fine-tuning 
over feature extraction for several reasons. The dataset used boosts up a considerable number of 
images, from several image domains. However, there is a huge difference between the histopathology 
dataset and the other relevant datasets.
Fine-tuning a CNN design can be a time-consuming task that requires specific equipment. However, 
refining the entire network does not always guarantee optimal performance. In this research, we 
discuss the implications of employing a cutting-edge architecture to fine-tune convolutional neural 
networks (CNNs) using the histopathology dataset. Our objective is to extract valuable information 
on the most effective fine-tuning strategies to achieve precise medical image classification. To realize 
this goal, in this work, applying different learning rates to state-of-the-art CNN architectures, we used 
the area under the ROC curve (AUC) as a performance metric. The effectiveness of each CNN 
architecture was independently assessed on its own, separate, and unlabeled test set [14].
In this study, some challenges that have been observed in medical image analysis are tackled. These 
challenges include data scarcity, features extraction, and model architecture selection. The main 
contributions of our work are as follows:
 ● We propose cancerVisionNet, a deep CNN model optimized for histopathological 
imaging and its classification. By using such a model, we are able to perform feature extraction and 
classification of images from cancerous tissues, hence enhancing diagnostic performance.
 ● To address overfitting and lack of data, we incorporate detailed data augmentation 
measures to avoid data shortage. Such techniques increase the training data volume to 220,025 
images, thus improving the models’ ability to generalize and empower the model for overcoming the 
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overfitting. In this work, we propose to comprehensively evaluate the performance of CS-based 
CancerVisionNet on the popular PatchCamelyon dataset. According to the receiver operating 
characteristic (ROC) analysis the model got an AUC value of around 0. 90 and a classification 
accuracy of 95.4% are quite satisfying results.
 ● The subsequent methodologies and results serve to establish the foundation for 
future works that consider other architectures and explore more than the above methodologies and 
results. CancerVisionNet remains rather flexible suggesting that the proposed framework could be 
useful in any other medical imaging domains other than histopathology.
The layout of this study is as follows.
Section 2 gives an overview of the related literature on the research topic. In Section 3, we detail our 
research methodology, and in Section 4, we describe the empirical results obtained in this study. 
Section 5 gives us discussion on results and comparison of this study with other works. Section 6 
concludes the results of the research article.

2. Literature review
The urgent need to provide support to pathologists and provide additional information has led to the 
prominence of the use of deep learning systems for the classification of medical images. Specifically, 
Mehra [15] undertook an in-depth investigation into the implications of transfer learning using 
CNN’s architectures, such as ResNeT50, VGG16, and VGG19. Their study revolved around the 
Break-His dataset [16], encompassing 7,909 histopathology images related to breast cancer. 
Concentrating on binary classification, the researchers substituted the original ultimate classification 
layer of each architecture with a logistic regression classifier. Researchers utilized various measures, 
including precision, F1 score, accuracy, and region under the ROC bend (AUC), to fully evaluate 
performance. They observed that the VGG16 architecture performed best in the first splitting 
procedure (95.6%), followed by the VGG19 architecture (91.85%). However, adding transfer 
learning to the ResNet architecture did not improve its performance.
Kassani, Kassani, Wesolowski, Schneider and Deters [17] developed a new approach for labeling 
histopathological images using PatchCamelyon [18, 19], Break-His [16], Bach and Bio-Imaging 
datasets during model training and validation [20]. The authors introduced an innovative 
binary-classification ensemble model that harnessed VGG19 [21], MobileNet [22], and DenseNet 
[23] CNN architectures, achieving remarkable accuracies of 98.13%, 95%, 94.64%, and 83.10% 
across Break-His, Bach, PatchCamelyon, and Bio-Imaging, respectively. To counteract overfitting, 
various image augmentation techniques were employed, encompassing horizontal and vertical 
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flipping, zooming, and rotation, effectively expanding the training dataset. Using a learning rate of 
0.0001% and a batch size of 32, the models went through 1000 iterations after the images were scaled 
to 224x224 dimensions using the Adam optimizer. The ensemble model exhibited improved 
performance on different datasets.
Vesal, Ravikumar, Davari, Ellmann and Maier [24] investigated how transfer learning affected the 
Bach dataset and their research encompassed a multiclass classification strategy, focusing on a 
maximum of four classes. A comparative analysis was conducted for the effectiveness of InceptionV3 
[25] and ResNet50 [26] CNN architectures. To train these CNN models, the researcher used 
stochastic gradient descent with a learning rate of 0.0001. The training was carried out over 100 
epochs with a batch size of 32. The results revealed the superiority of the enhanced ResNet50 
architecture over InceptionV3, achieving better accuracy.
In the field of histopathological image labeling, transfer learning has been a popular research topic.  
Deniz, Şengür, Kadiroğlu, Guo, Bajaj and Budak [27] conducted a study on the Break-His dataset, 
using Alex Net and VGG16 as feature extraction architectures [16]. The authors employed a batch 
size of 10 and a learning rate of 0.0001 to combine momentum optimization with stochastic gradient 
descent. The researchers conducted three independent experiments that combined the output of the 
Alex Net and VGG16 networks with support vector machine (SVM) classifiers. The findings 
demonstrated that the fine-tuned Alex Net architecture performed better than both the VGG16 and 
Alex Net networks in feature extraction, among other areas. Ahmad, Ghuffar and Khurshid [28] used 
the Bio-Imaging dataset to study the impact of transfer learning with three distinct CNN 
architectures: ResNet, Alex Net, and Google Net. The dataset was enhanced using image recognition 
software to increase the number of shots from 260 to 72,800. The ResNet architecture outperformed 
the rest of the designs with an accuracy rating of 85%.
In this research [29], an idea of using multiple CNNs for classifying the cancer pathological images 
of breast was presented. The application of three CNNs proved to provide a higher accuracy, 
precision, and F1-score in comparison to single CNN models; it also solved problems with wrong 
classification and time-consuming. However, there are some drawbacks when applying the model, 
which include the fact that the feature annotation procedure of the CNN training is one of the key 
processes of this model and also requires well-annotated datasets and multiple CNN trainings, which 
are time-consuming and computationally expensive. However, the explainability factor is still a 
critical issue since these models are still referred to as ‘black boxes’ in the medical fraternity.
Another recent work also centered the use of transfer learning techniques to enhance the performance 
of medical images analysis [30]. Through transfer learning, models are able to draw on pre-existing 
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networks hence minimizing the need for large amounts of labeled data as well as shortening the 
training process. However, the drawback of this approach is that it may lead to the discrepancy 
between the source domain and the target domain, which in turn impacts the model. In the same 
respect, fine-tuning can also bring biases in case they are not well managed during the process.
Recent years, Zero-Shot Learning (ZSL) has been noted for its ability to categorize images using 
auxiliary and pre-existing knowledge without minimum labeled datasets. This approach greatly 
alleviates a common issue in medical imaging that is, the dependence on large annotated datasets. 
However, its performance is still lower than the traditional supervised learning models, and the 
employment of ZSL in critical areas such as medicine for diagnosing is not yet fully proved [31].
The focus of this work [32] was to incorporate attention operations into CNN where it appears that 
the addition of an attention module greatly improves the interpretability of the classifier in addition 
to its predictive accuracy for medical images. To solve this problem, the attention mechanism helps 
the model to concentrate on specific important regions of the image helping to improve the diagnostic 
accuracy of the model. This approach mitigates some of the black-box issue that are characteristic of 
traditional CNNs since it is the model’s rationale in terms of pictures. However, the method generally 
demands a significant amount of computation to obtain the results and does not perform well when 
applied to other datasets if not properly calibrated.

3. Methodology
This research aims to present the classification of histopathological images using CNN architectures 
fine-tuned with weights from the PatchCamelyon (PCam) dataset. We used an automated mechanism 
to tune the parameters such as learning rates, batch size, and network architecture to enhance the 
CNN model for identifying specific histopathological images. Some additional changes were 
performed manually in order to tune certain aspects of the model, like layer sizes and irregularities 
parameters, as per results and, experience knowledge in improving the model’s performance. In the 
following diagram, we offer a general overview of the proposed method of this study. Apart from the 
phases depicted on the chart in Fig. 2, this study involves several phases, as shown below in the 
diagram.
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3.1 Mechanism of operation
In this study, the initial phase involved a thorough evaluation and preprocessing of the dataset to 
ensure its suitability for the intended objective. This included a detailed review of the images to 
identify potential issues such as image dimensions and quality. Methods were then applied to expand 
the dataset's size. Subsequently, careful selection of CNN architectures took place; thereafter, they 
were trained to attain optimum performance in the classification task by fine-tuning their weights 
using the PCam dataset. Model performance was evaluated by comparing results from different 
designs using area under the curve (AUC) and accuracy metrics. Finally, the results were carefully 
evaluated. The methods described in this document are expected to offer a valuable contribution to 
ongoing advances in medical image analysis, which could result in increased accuracy in 
histopathological image classification.
To facilitate image categorization, the proposed deep learning model systematically uses the 
PatchCamelyon (PCam) dataset. The initial phase involves procuring the PatchCamelyon dataset, 
which serves as the foundation for the subsequent training and testing stages. Next step of the process 
is Exploratory Data Analysis (EDA) of the given dataset and it involves Data Availability Check, 
Creating Label Dataframe, Image Visualization and also Label Distribution Analysis. This is useful 
to define the nature of a given dataset and distribution of the classes for the further processing. A 
subsequent step called Feature Engineering is then conducted with the aim of improving usability of 
the dataset for the model. This step enables preparation of the data being fed to the model so as to 
include the right features for the classification to be made. The dataset is then split into a training and 
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testing set, where the training set was taken to be 80% and the test set to be 20%. The training dataset 
is thereafter fed into the CancerVisionNet architecture, in which the model is trained on the images 
in an attempt to identify the important features and patterns. More especially, the architecture of 
CancerVisionNet that is proposed for histopathological image analysis and consists of layers that are 
specifically developed for feature extraction and classification purposes. At the same time, the testing 
dataset is used to check generality and accuracy of the model while applied for the newly entered 
data. The final results of classification are obtained after the Model trained on the CancerVisionNet 
architecture is assessed. This stage also proves how the model can correctly categorize cancerous 
tissues within histopathology images, which is helpful in medical imagery applications.
3.2 CancerVisionNet
The main contributions of the proposed CancerVisionNet model are in providing a novel evaluation 
and a suitable solution for histopathological image classification, which is highly challenging. Unlike 
the previous models CancerVisionNet is specifically designed for the medical image data and obtains 
excellent accuracy while avoiding overfitting by using data augmentation technique. Moreover, the 
model employs label distribution-based methodologies like label distribution analysis and 
exploratory data analysis (EDA) to ensure that metrics are optimized across a range of assessments. 
This research not only improves the classification accuracy, but also opens up significant possibilities 
for other medical image analysis tasks for future studies to further advance the standard of related 
research.
The convolution filter, also known as the kernel, is applied to the input images starting from the upper 
left corner, as illustrated in Fig. 3. This process extracts the crucial features for image classification.  
A CNN uses the backpropagation technique to iteratively learn the weights of the convolution filter, 
which play a vital role in accurately classifying the images. Several filters are used on the images to 
extract as many characteristics as possible.
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The process of convolutional filtering generates feature maps from input images, which are 
subsequently utilized in further layers for precise classification. Multiple filters produce several 
feature maps that capture unique image characteristics [17]. Back-propagation is employed to 
fine-tune the CNN's weights from the last layer to the first, beginning with a non-zero distribution to 
prevent gradient problems. To avoid starting with a blank slate, network weights can be copied and 
pasted across nodes.
The proposed deep learning model, CancerVisionNet, makes use of partially and completely 
connected layers activated by ReLU, batch normalization, MaxPooling, and Dropout methods. When 
placed together, these parts allow for the extraction of characteristics from the input data, which, in 
turn, allows the data to be classified into different cancer groups. Fig. 4 shows the schema of the 
proposed model.

Starting with the initial input shape and channel dimensions as reference data, the CancerVisionNet 
architecture is incrementally built layer by layer, merging activation functions, convolutional layers, 
pooling layers, and batch normalization layers. The outcome is determined using a Softmax classifier. 
The model is trained using histological images of lymph node sections, to attain optimal model 
performance. 
Due to the vital importance of medical images, rigorous precautions are taken to combat overfitting. 
A model is considered to be over-fitted if it performs very well on training data but poorly on test 
data. In response, an array of regularization techniques is introduced. These methods operate by 
slightly elevating a model's bias or training error, thereby diminishing its variance, and consequently 
lowering testing error. The primary objective is to minimize errors in the testing dataset, regardless 
of any discrepancies observed in the training dataset.
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3.2.1 Early stopping 
One way to reduce the total number of training iterations is by using early stopping and mitigating 
the overfitting of the model on the training dataset. This method entails stopping training if the 
accuracy of the validation data set does not show improvement over a predetermined number of 
epochs. By circumventing prolonged and unfruitful epochs, early stopping conserves computing 
resources and serves as a preventive measure against overfitting [33]. One notable advantage of 
integrating early stopping lies in its ability to optimize the epoch size hyperparameter. This 
optimization is achieved by automatically terminating training if no enhancements in accuracy are 
witnessed even when a larger number of epochs is initially defined [34].
In our proposed model Early stopping was used for the 15th epoch when validation accuracy stopped 
at 92.5% with training accuracy reached till around 95.4%. The decreasing validation loss and stable 
overfitting plot of validation accuracy prove that our early stopping method worked fine, the model 
was renormalized before it suffered from an over-fitting so its performance upper-hand without 
making waste through resources.
The performance of the proposed model with early stopping is given below, showing training, and 
validation accuracies and losses on different epochs.

3.2.2 Best model  
When training a model, it is crucial to monitor its performance across epochs to ensure a consistent 
improvement in accuracy or its maintenance at a high level. When implementing a model-saving 
mechanism, it is a common practice to preserve only the best-performing model based on a specific 
metric, often the validation accuracy [35]. In this scenario, the model is saved exclusively if the 
accuracy achieved in the current epoch surpasses the highest accuracy attained thus far. This ensures 
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table 1: performance metrics of the model with early stopping across epochs

Epoch #

1

3

5

7

9

11

13

15

79.75%

86.82%

91.50%

93.20%

94.20%

94.90%

95.20%

95.40%

83.20%

85.40%

89.00%

90.50%

91.20%

91.80%

92.30%

92.50%

0.4371

0.3086

0.2500

0.2000

0.1800

0.1600

0.1400

0.1200

0.3696

0.3302

0.2900

0.2700

0.2600

0.2400

0.2200

0.2000

Training Accuracy Validation Accuracy Training Loss Validation Loss



that the saved model represents the best outcome obtained during the training process.
3.2.3 Dropout 
The Dropout regularization technique, introduced by Deniz, Şengür, Kadiroğlu, Guo, Bajaj and 
Budak [27], stands as a potent tool commonly employed in ensembles and shares similarities with 
bagging. Throughout the training process, each neuron is assigned a probability, denoted as p, for 
being randomly deactivated, thus enabling the creation of multiple networks from a single one. 
Dropout serves as a means to counteract overfitting and bolster the resilience of a CNN. Through the 
usage of the data augmentation and dropout techniques, the problem of overfitting has been 
considerably limited. We have performed validation of the model against multiple parameters. It 
showed a high level of performance across the entire model, which is evidence that the model has a 
good level of generalization to new data points, which have not been encountered during the model’s 
training. Furthermore, and most importantly, the validation of the model based on a large and diverse 
sample size increases confidence in the applicability of the model to real-world settings.
3.2.4 Image augmentation 
Incorporation of image augmentation techniques has gained significant prominence in addressing 
overfitting concerns and enlarging the training dataset's scope [36]. Given the impracticality of 
training a model on every conceivable image, image enhancement offers a remedy by subjecting 
source images to diverse transformations, rotations, and brightness adjustments, thereby generating 
synthetic images. This methodology proves to be instrumental in mitigating overfitting risks and 
elevating model accuracy [37].
3.3 Performance measures 
A variety of metrics to assess classifier performance have been used in the academic literature. 
Although accuracy, with its clear measure of classification success, is one of the most popular metrics 
used to assess classifier performance, other measures such as recall, accuracy, and F1 score are also 
used.
Accuracy can be defined as follows.

If TP is true, then the expected positive class is indeed positive, and if TN is true, then the predicted 
negative class is actually negative. The process starts with a false positive (FP) and ends with a 
false negative (FN) when the wrong class is classified as positive instead of negative. However, it is 
important to note that the accuracy measure can be misleading when employed with the unbalanced 
datasets, constituting its inherent limitation.
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4. Experiments and Results
This section presents experiments and the results obtained in this study. 

4.1 Experiments

4.1.1 Dataset 
An improved version of the PatchCamelyon (PCam) benchmark dataset was used for this research 
[38]. This collection contains 327,680 color images, all acquired from histopathology scans of lymph 
node sections. Each image has dimensions of 96 by 96 pixels. Each image has a binary label that 
indicates the presence of metastatic tissue. However, the original PCam dataset included duplicate 
images resulting from probabilistic sampling; nevertheless, the present collection is free from 
duplicates. Fig. 5 shows an example of the PatchCamelyon data set.
PCam provides a unique benchmark for machine learning models, introducing a clinically important 
task of detecting metastasis through binary image classification. This dataset can be efficiently 
trained on a single GPU, even if it is larger than CIFAR10 but smaller than ImageNet. Machine 
learning models trained on PCam exhibit impressive performance in tasks such as tumor detection 
and full-slide image diagnosis, as seen in the Camelyon16 challenges. Foundational machine learning 
study topics such as active learning, model uncertainty, and explainability are well suited to this 
dataset because it finds a happy medium between task difficulty and practicality [38].

4.1.2 Experimental setting and requirements 
In this study, the fine-tuning of CNN architecture was performed using Google Colab’s tensor 
processing unit (TPU), which provides a suitable environment for the management of 
computationally resource-demanding processes. This way, one can achieve very quick cycles of 
experimentations and fine-tuning, and it is still possible to perform such optimizations in 
environments that would hardly be called compute-intensive. The use of TPU also shows that it’s 
possible to use these models in environments that can limit resources, proving that the given model 
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is versatile and can be applied to various fields.
This study uses the Keras package in Python to create the (CNN) model. Specifically designed to 
distinguish between normal and tumorous histology images, the model is known by the moniker 
CancerVisionNet. Many layers that make up CancerVisionNet include activation functions, batch 
normalization, max-pooling, dropout, and separable convolutional layers. The network takes a 
histological image with predetermined width, height, and depth as input and returns a prediction of 
whether the image is normal or contains tumors as output. 
A 32-item batch size was used for CNN architecture tuning, and the Adam optimizer was employed 
consistently throughout the all test iterations [39]. Visual representation of the label distribution 
within the dataset was performed using a count plot generated by Seaborn. Standardization was 
executed to uniformly resize all images to dimensions of 96 pixels on each side. The models used a 
50% probability dropout layer instead of traditional fully linked layers. In addition, a new fully 
connected layer was added to act as a classifier, which improved the network's accuracy in general.
To mitigate the overfitting issue, which is prominent when training deep learning models with limited 
datasets, we used ImageDataGenerator from Keras designed to augment data in real time. This 
technique by default creates augmented images during the training process with the help of random 
rotation, shifting, flipping, zooming and other similar operations. These techniques artificially 
enhance the scale of diversity of the training data thus ensuring that the model does not dictate the 
training samples it was trained on but rather learn to minimize variations in the input data. In this 
regard, the model has better generalization capabilities on the data that it has not seen before.
Furthermore, by scaling the images pixel intensity to the range of 0 to 1, we made the training process 
more stable since problems such as different ranges of pixel intensities could easily affect the results. 
The model was trained using Adam's optimization algorithm, and categorical cross entropy loss 
function was used to control the overfitting. We also used early stopping with patience of 15 epochs. 
Due to this approach, we were able to track the validation loss after each epoch and ensure that the 
model stopped training as soon as the model could not further improve its performance, and hence 
mitigated overfitting. Further, only the best set of model parameters was kept as observed from 
cross-validation and the validation loss, which helped in minimizing overfitting of the model.

4.2 Experiment results
The PatchCamelyon dataset, which contains 220,025 annotated images, covering 60% positive and 
40% negative classes, served as the training dataset. For the evaluation of the classifier, an unlabeled 
data set of 57,458 images was provided and the results were submitted to calculate the AUC metric. 
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All assessments were performed using the Keras package in Python. The schematic representation of 
the proposed model is shown in Fig. 2.
In this illustration, "Input" represents the data that are fed into the model, and "Softmax" represents 
the output layer that is in charge of producing class probabilities. Layers are abbreviated as follows: 
"Conv" for convolutional, "ReLU" for rectified linear unit activation, "BN" for batch normalization, 
"Pool" for max pooling, "Dropout" for dropout, and "FC" for completely connected.
Table 2 shows the number of epochs needed to train the neural network model using the Keras 
framework. During training, we minimized the training loss by adjusting the model's weights. At the 
conclusion of each epoch, we tested the model on a validation set to see how well it could generalize.

Two crucial callbacks were used in the training. To ensure that the best performing model was kept, 
ModelCheckpoint callback first stored the model with the highest validation accuracy. Secondly, in 
the event that the validation accuracy plateaued, the ReduceLROnPlateau callback dynamically 
modified the learning rate, improving the convergence of the model.
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Table 2: Training parameters and their description

Table 3: Proposed architecture of CancerVisionNet

Parameter Description

Epochs 

Checkpoint Frequency 

Learning Rate Scheduler 

Checkpoint Criteria 

15

After Each Epoch

ReduceLROnPlateau

Maximum Validation Accuracy

Layer (type) Output shape Parameters 

conv2d_1 (Conv2D) (None, 96, 96, 32)         2432 

conv2d_2 (Conv2D)     (None, 96, 96, 32) 9248 

conv2d_3 (Conv2D) (None, 96, 96, 32) 9248   

batch_normalization_1 

Batch (None, 96, 96, 32) 128 

max_pooling2d_1 

MaxPooling2 (None, 48, 48, 32) 0 

dropout_1 (Dropout) (None, 48, 48, 32) 0 

conv2d_4 (Conv2D) (None, 48, 48, 64) 18496 

conv2d_5 (Conv2D) (None, 48, 48, 64)         36928 

conv2d_6 (Conv2D) (None, 48, 48, 64)         36928 

batch_normalization_2 

Batch (None, 48, 48, 64) 256 

max_pooling2d_2 



In Table 3 we can see the empirical information of the proposed CancerVisionNet model architecture. 
There are a total of 99,237,000 parameters, with 9,922,498 of them being trainable and 1,742 being 
non-trainable. To get the best possible value for the parameters, the training procedure updates the 
trainable parameters. On the other hand, non-trainable parameters do not update during the training 
and never optimize during the training. These are passed as input, and hence non-trainable parameters 
have no contribution to the process of classification or detection.
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Batch (None, 96, 96, 32) 128 

max_pooling2d_1 

MaxPooling2 (None, 48, 48, 32) 0 

dropout_1 (Dropout) (None, 48, 48, 32) 0 

conv2d_4 (Conv2D) (None, 48, 48, 64) 18496 

conv2d_5 (Conv2D) (None, 48, 48, 64)         36928 

conv2d_6 (Conv2D) (None, 48, 48, 64)         36928 

batch_normalization_2 

Batch (None, 48, 48, 64) 256 

max_pooling2d_2 

MaxPooling2 (None, 24, 24, 64) 0 

dropout_2 (Dropout) (None, 24, 24, 64) 0 

conv2d_7 (Conv2D) (None, 24, 24, 128)        73856 

conv2d_8 (Conv2D)   (None, 24, 24, 128)        147584 

conv2d_9 (Conv2D) (None, 24, 24, 128)        147584 

batch_normalization_3 

Batch     (None, 24, 24, 128)    512 

max_pooling2d_3 

MaxPooling2 (None, 12, 12, 128) 0 

dropout_3 (Dropout)   (None, 12, 12, 128) 0 

flatten_1 (Flatten) (None, 18432) 0 

dense_1 (Dense)               (None, 512) 9437696 

batch_normalization_4 

Batch (None, 512) 2048 

dropout_4 (Dropout) (None, 512) 0 
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Fig. 6 illustrates the confusion matrix of the proposed CancerVisionNet model. An indicator of how 
well a binary classification model is performing is the confusion matrix. The rows represent the real 
labels, while the columns show the labels predicted by the model. According to the matrix, there are 
two groups, denoted '0' and '1'. When it came to class '0', the model got 7407 of the cases right (true 
negatives) and 593 wrong (false positives). There were 2,775 cases of inaccurate predictions '0' (false 
negatives) and 7,723, 00 cases of valid predictions '1' for class '1'. For class '0', for instance, 7407 
forecasts are true negatives and 593 are false positives, for a total of 93%. class '1' has a high true 
positive rate, and class '0' has a high true negative rate, both of which show that the model is very 
good at making predictions.
The model's performance evaluation hinges on binary accuracy, gauging the proportion of accurately 
classified samples.

Fig. 6 Confusion matrix

Fig. 7 ROC curve results
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The model's performance across the training epochs is shown in the figure below. While the loss plot 
shows how training and validation loss have decreased across epochs, the accuracy plot shows how 
both training and validation accuracy have improved.

We obtained the AUC of the ROC curve for assessing classifier effectiveness, our conclusions are 
anchored in this metric. In the research conducted by Ahmad et al. [28], they attained an 85% 
accuracy on the BioImaging dataset through fine-tuning of a ResNet architecture. However, the 
details of their transfer learning methodology remain undisclosed. On the other hand, Mehra [15] 
utilized the VGG16 network in conjunction with logistic regression, achieving a precision of 92.6% 
and an AUC of 95.65%. In particular, they did not extensively explore the intricacies of each 
fine-tuning facet.

Table 4 presents the performance metrics of the proposed CancerVisionNet model, including 
Precision, Recall, and F1-Score, across two classes: Tumor-free are those patients without diagnosis 
of tumor, Tumor-detected are patients with the detected residual tumor. Also, there is an overall avg. 
(Micro Avg.), as well as class level Avg. (Macro Avg.). In addition, proportional avg. (Weighted Avg.) 
shows all possible results regarding the performance of the certain model.
Precision shows how many of the targeted positive outcomes are actually accurate as given by the 
model. Specificity for Tumor-Free images was as follows: The model had 0.96 for Normal-Detected 

Fig. 8 Model accuracy/ loss

Table 4: Proposed Model Performance Evaluation

Metric Tumor-Free Tumor-Detected Overall Avg. Combined Avg. Proportional Avg.

Precision

Recall

F1-Score

0.96

0.93

0.94

0.93

0.97

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95
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images, respectively; and for Tumor-Detected images it was 0.93. Recall is the assessment of the 
model of how well it is capable of identifying all relevant cases in the given data set. The recall for 
Tumor-Detected images was rather high at 0.97 and for the model accuracy in identifying the tumor 
cases it highlighted the model at 97. This is so because F1-Score is the harmonic mean between 
precision and recall that gives a balanced view of the model’s performance. For Tumor-Free and 
Tumor-Detected classes the F1-Score is above 0.94 indicates a fairly steady performance throughout 
the two classes and that makes it quite reliable.
All of the metrics presented in the above table are related to the level of performance metric values, 
showing a very high figure with the majority of them being over 95%. This shows that 
CancerVisionNet model excelled other models in each of the evaluation metrics, and thus could be 
useful in histopathological image classification.
5. Discussion
The purpose of this study was to examine the potential consequences of the proposed 
CancerVisionNet model using PatchCamelyon datasets. Three dense layers, two max-pooling levels, 
two dropout layers, and six separable convolutional layers make up the 13 layers of our proposed 
model. The proposed deep learning model used Adam, a popular optimization method with tunable 
learning rates, as its optimizer. The learning rate corresponds to the number of steps used to update 
the model's weights during training, which is 0.0001. Because it is often employed for binary 
classification issues, binary cross entropy, which assesses the difference between the actual and 
predicted labels, is selected as the loss function.
The model training spans 15 epochs, which means that the complete training dataset passed through 
the model is repeated. A learning rate scheduler named ReduceLROnPlateau is harnessed to augment 
learning. When the validation accuracy stays the same for several epochs, this scheduler increases the 
learning rate by 0.5 to promote better convergence. A ModelCheckpoint mechanism is implemented 
to store the weights of the most optimal epoch based on validation accuracy, ensuring the best 
performing model that is preserved for the evaluation.
When comparing our results with those of other researchers, challenges arose due to variations in 
evaluation criteria and data sets. For instance, Kassani, Kassani, Wesolowski, Schneider and Deters 
[17] attained a 94.64% accuracy on the PatchCamelyon dataset; however, they did not provide 
specific details about their employment of transfer learning, network fine-tuning, test dataset size, or 
using the dataset without labels. In the testing data, our method achieved a remarkable accuracy of 
95.4%, which allowed us to reach first place among all participants. A comprehensive overview of 
the best performing methods is presented in Table 3, revealing that our methodology exceeded other 
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approaches by a substantial margin of up to 7.5%. This achievement is a source of satisfaction, 
underscoring the success of our research and reinforcing the effectiveness of our proposed approach.
Our strategy underscores the feasibility of attaining state-of-the-art accuracy in cancer detection, 
even when working with relatively modest data sizes. The invaluable contribution of 
PatchCamelyon, a benchmark dataset tailored for histopathology image analysis, was crucial to 
achieving this milestone. By adeptly harnessing the PatchCamelyon dataset, our approach adeptly 
captures pivotal features for cancer detection, culminating in remarkable accuracy in identifying 
cancerous regions.
The proposed model entailed the utilization of deep learning architecture, specifically CNNs, to 
classify histopathology images into cancerous or noncancerous categories. To achieve the maximum 
possible accuracy, the proposed model architecture was carefully designed and trained using the 
PatchCamelyon dataset. Due to the large quantity and variety of histopathological images, the 
categorization process was complex. However, the effectiveness of the method in identifying 
malignant areas demonstrated its resilience and demonstrated the promise of deep learning in medical 

In the realm of medical image analysis, accurate cancer detection is of paramount importance for 
prompt treatment and effective patient care. Histopathological cancer detection image classification 
challenge sought to foster the development of robust and efficient techniques for identifying cancer 
in histopathological images. Even though this paper focuses on the technical aspect of the 
CancerVisionNet model, the integration feature is the most significant for its adoption to clinical 
practices. The higher accuracy level of the proposed model for histopathological image classification 
means that impact on diagnostic efficiency would be positive, giving fast and accurate results for 
clinical practice. This may help improve the quality of the outcomes of patients by allowing 
physicians to detect malignant tumors at an early stage and in some cases making more specific 
treatment plans in cancer treatment.

Research study 
authors 

Dataset Accuracy Position 

 Kassani, Kassani, 
Wesolowski, 
Schneider and 
Deters [17] 

PatchCamelyon 94.64% 2nd 

Ahmad, Ahmed [40] PatchCamelyon 94% 3rd 

Our study PatchCamelyon 95.4% 1st 

 

Table 5: Comparison of accuracy with previous approaches/methods
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When it comes to medical image analysis, there is a noticeable lack of high-quality data with which 
to train convolutional neural networks (CNNs). Thus, it is very advantageous to use transfer learning, 
which makes use of pre-trained CNN weights from a big dataset. Retraining a convolutional neural 
network (CNN) on a specific data set is called "fine tuning." Although adjusting the whole CNN may 
improve performance, it is time-consuming and not always successful. For datasets featuring natural 
images, it is observed that the lower layers of the CNN tend to grasp more general features such as 
edges and circles, which are common across various image datasets. In contrast, the upper layers 
capture the highly distinctive attributes of the original dataset [13].
We understand that cross-domain validation is important in an attempt to validate the proposed 
CancerVisionNet model across different types of histopathological images. It is important as it helps 
validate the effectiveness of the given model when implemented in different environments other than 
those used in model training. That notwithstanding, for reasons of the current dataset limitations, this 
validation was not done in the current study. Subsequent works will also include cross-domain 
validation in an attempt to enhance the testing of the CancerVisionNet model on other datasets and 
various fields of medical imaging.
Other researchers have developed automated breast cancer diagnostic methods using the Break-His 
dataset. Spanhol, Oliveira, Petitjean and Heutte [41] fashioned a computer-aided diagnosis system 
using the dataset, relying on handcrafted feature extraction to achieve 84.60% accuracy. Concerning 
the Break-His dataset, Deniz et al. [27] compared the efficacy of fine-tuning and feature extraction, 
highlighting the superior performance of fine-tuned Alex Net compared to VGG16 when using SVM 
as a feature extractor. Inspired by these findings, our aim was to investigate how fine-tuning could 
further improve CNN performance. This has been achieved in this study by employing the proposed 
model and showing better performance compared to the state of the art approaches. 

6. Conclusions 
In this study, our focus was on the intricacies of CNN tuning efforts by proposing the 
CancerVisionNet model. We also assessed the impact of learning on performance using the Adam 
optimizer with a learning rate of 0.0001. When fine-tuning a network, it is advisable to employ a 
gradual learning rate to preserve initial weights. For scenarios with limited images, fine-tuning a 
pre-trained CNN is recommended. Our research underscores that fine-tuning CNNs with advanced 
architectures can significantly enhance the accuracy of medical image classification, especially for 
histopathology datasets. Our method of extracting image features using the PatchCamelyon dataset 
has outpaced other machine learning models in accuracy, offering an efficient solution for medical 
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image analysis. These tuning findings are context-specific, and broader applicability would require 
testing across various domains.
Future endeavors could focus on refining CNN accuracy for histopathological image analysis. 
Exploring different CNN architectures and comparing them with those used here could be a fruitful 
avenue. Investigating the effects of various fine-tuning strategies on CNN performance also holds 
promise. Expanding the training and testing dataset size could validate the efficacy of the proposed 
method on a larger scale. We also realized that even as scalability to larger data sets is pinpointed as 
future work, it was not pursued in this study because the main purpose was to test the newly 
developed CancerVisionNet on the available dataset. Subsequent research will focus on extending 
this work with larger and more variegated datasets allowing for the addition of numerous features that 
are to increase the model’s stability and versatility. Furthermore, applying this method to other 
medical imaging datasets could assess its effectiveness in different medical contexts. Our research 
presents a promising route to enhance CNN performance in medical image analysis, with ample 
potential for further progress.
The performance of the model has been tested and is in high accuracy and robustness on the current 
dataset and various accuracy measurements. It is true that real-time clinical settings and larger 
datasets can add more variables, the architecture of CancerVisionNet can accommodate this increase 
in variables accordingly. Thus, its highly modular structure can easily scale it to work with more 
extended datasets and it is likely that its efficiency can be tuned for real time use. The future work 
will concern these aspects in the attempt to determine whether or not this model can be applied in 
other clinical settings. 
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