
KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 115

Automatic Taxonomy Generation and Incremental Evolution on
Apache Spark Parallelization Framework

Kanwal Aalijah1 Rabia Irfan1 Umara Umar3 Sanam Nayab4

Abstract

The term “Big Data” refers to a large volume of information usually in terabytes and
petabytes. It includes both structured and unstructured data. Unstructured data is
conventionally text-heavy, but may also contain data such as facts, dates, and numbers.
To use this unstructured information effectively, it needs to be processed and organized.
Taxonomy is considered a powerful way of organizing information. For automatic
taxonomy generation, various techniques have been proposed in the past. However, the
substantial nature of big data presently crosses the processing abilities of traditional
techniques. Thus, to meet this challenge an extensible and scalable technique is required
to potentially accelerate the process of taxonomy generation and its evolution upon
arrival of new data, hence catering to a large amount of unstructured big data. This paper
proposes a technique for both the taxonomy generation and evolution of Apache Spark
infrastructure. The proposed technique is evaluated on a text dataset from a computing
domain. The evaluation results show that the technique presented in this paper
outperformed the existing techniques in terms of time and quality metrics. The time
and quality-based evaluation showed that the use of the MapReduce environment has
resolved the scalability issues of the current taxonomy generation and evolution process.

Keywords: Big Data, Apache Spark, Unstructured Data, Taxonomy, Map-Reduce, Hadoop,
Scalable

1.	 Introduction

During the past two decades, communication using electronic media has acquired
extreme popularity and has gained a significant role in developed societies. Electronic
media provides several services such as the World Wide Web (WWW), mobile devices,
Internet of Things (IoT)-based devices, social networks, etc. This era is marked by the
circulation of the intense amount of data (in petabytes and zettabytes) across the globe.
This large volume of data produced from various sources [1] can be both structured and
unstructured. This bulk of data is called Big Data-A Technology Giant [2], [4], [5]. The

https://doi.org/10.51153/kjcis.v5i1.83

1Kanwal Aalijah l ksair.mscs8seecs@seecs.edu.pk	 		
2Rabia Irfan l rabia.irfan@seecs.edu.pk
3Umara Umar l uumar.msit19seecs@seecs.edu.pk	
4Sanam Nayab l snayab.msit19seecs@seecs.edu.pk

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 1 16

5V’s of big data – volume, velocity, variety, veracity, and value make data management
and analytics challenging for the conventional data warehouses. Big data, which is
unstructured, is the data with no standard formatting [3] and no definite structure as the
name shows. In order to draw useful information from this data, it should be managed,
processed, and effectively transformed. In other words, this data needs to be organized
into a structured form, like taxonomy.

Taxonomy is a hierarchical structure that organizes the given data in parent-child
relationships, based on the inherent concepts present in the data [6]. Taxonomy is an efficient
and effective way of organizing and classifying data [7] that also provides standardization
in case of the exchange of information. Taxonomy also provides an infrastructure for
knowledge management [8]. Taxonomy arranges information in a hierarchical structure
that makes navigation and searching for information easier [9] [10].

 Automatic taxonomy generation has two types i.e. (1) Incremental (2) Non-incremental.
Non-incremental taxonomy generation rebuilds the taxonomy from very scratch on
the entry of new documents into the current system. Kashyap et al [11] proposed an
innovative method for taxonomy generation that uses the Principal Direction Divisive
Partitioning (PDDP) approach [12] to generate taxonomy. Anke et al. [13] suggested a
conditional random field classifier for taxonomy generation. Velerdi et al. [14] presented
a graph-based method for taxonomy generation. All these techniques successfully
resulted in taxonomy generation, but upon the intervention of the new documents into
the system, these techniques regenerate the taxonomy from the very basis to get the
taxonomy updated, consequently producing non-incremental taxonomy architecture.
This approach is very time-consuming when a large dataset is involved. So, there was an
extreme need for a technique that generates taxonomy on top of the current taxonomy on
the arrival of the new document into the system. This process is known as “Incremental/
Progressive Taxonomy Generation” or may be named as “Taxonomy Evolution”.

There are rare techniques which have focused on incremental taxonomy generation
like [15], AdaptTaxa [16], IHTCTaxa [17], TIE [18]. The methodology EvoTaxa [15] is
especially developed for tagged data. AdaptTaxa [16] focuses on incremental taxonomy
generation technique for unstructured textual data. It adopts a supervised approach that
requires training data. The technique IHTCTaxa [17] uses an unsupervised hierarchical
clustering-based approach by adjusting the newly introduced documents. TIE [18] is
an incremental taxonomy generation algorithm that updates taxonomy upon the entry
of new documents. All these techniques, be it non-incremental or incremental, provide
a more or less good quality taxonomy, however, lacks the focus on rapidly increasing,
voluminous big data. With the emerging trend of big data and cloud computing, the data is
being produced from varying sources as well as being stored and processed electronically
and automatically [19][20].

Automatic Taxonomy Generation and Incremental Evolution on Apache Spark Parallelization Framework

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 117

In the realm of big data, we are always in search of certain techniques and algorithms
which prove to be dependable and scalable to negotiate with the varying kind of data.
Some progress has already been achieved in the field of hierarchical clustering for huge
datasets, such as [21] and [22]. The scope of these studies was limited to hierarchical
clustering and they did not adequately concentrate on the idea of taxonomy generation
and evolution. Besides, none of these techniques addressed the concept of parallelization
for developing a scalable and efficient algorithm for generating and evolving taxonomy.

A new technique has been devised in our work [37] for the taxonomy generation and
incremental evolution comprised of the MapReduce paradigm incorporating Apache
Spark. MapReduce is capable of minimizing time by parallel data processing. Fault
tolerance is also being provided by capitalizing on a distributed file system [19].
MapReduce environment can improve the scalability issues of present taxonomy
generation and evolution methodologies. However, our previous work didn’t focus on
the evaluation of the proposed technique with respect to the parallelization framework,
thus, we were not be able to figure out the essence of achieving scalability previously.
This paper particularly focuses on this aspect.

The major problem with existing taxonomy generation algorithms was the amount of
data it can process. Our algorithm processes the data in a parallel fashion in small chunks
applying HAC on each chunk of data. That is where map-reduce comes in. The principle
behind map-reduce is you divide the tasks into smaller tasks and then combine them.
Exactly in the same fashion, we are making small taxonomies on each chunk of data and
once all those taxonomies are made, they are combined. We use HAC on the spark engine
which at the backend uses map-reduce to perform HAC.

In our research, we have made the following contributions:
1.	 The proposed technique provides us a solution for taxonomy generation and

evolution in a considerably limited span of time in comparison with the existing
techniques, thereby making taxonomy utilization more effective.

2.	 As clustering is the base of the adopted taxonomy generation algorithm, the
clustering quality of taxonomy generated from the proposed methodology is
compared and evaluated with the clustering quality of taxonomy generated using
the existing taxonomy generation techniques. According to Silhouette’s score and
Davies Bouldin’s score, the clustering quality of the proposed methodology is
higher than the present techniques.

3.	 Zero or no similarity of a document with the current clusters case is being
addressed.

4.	 For the case of evolution, the application of Newick tree graph facilitates the
technique to incorporate even a graph-based taxonomy instead of just clustering-
based taxonomy.

https://doi.org/10.51153/kjcis.v5i1.83

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 1 18

The salient features of the remaining part of this article are as follows:
Succeeding the Introduction in Section I, Section II discusses the Literature Review.
Literature review elaborates the existing techniques for non-incremental and incremental
taxonomy generation in detail. This section also throws light on the basic taxonomy
generation process that has been used by the existing techniques. Section III presents the
background and discusses the preface of big data techniques and tools used in this research
work. Section IV explains the proposed technique devised for the processes of taxonomy
generation and taxonomy evolution. Section V compares the proposed methodology with
the current non-incremental and incremental taxonomy generation techniques and tests
the scalability of the proposed technique. Finally, Section VI summarizes the Conclusion
and Future Work.

2.	 Literature Review

 This section describes the automatic taxonomy generation in detail. Automatic taxonomy
generation process consists of two types: incremental and non-incremental. Be it as a non-
incremental taxonomy or an incremental taxonomy generation process, a basic taxonomy
generation algorithm is used in order to build the initial taxonomy in both cases. The
commonly used steps of taxonomy generation are: data preprocessing, data modeling,
hierarchy formation and node labeling. Different works have used different approaches
in order to perform these steps. In general, taxonomy generation algorithms first cleanse
the data using preprocessing that includes the removal of unnecessary details from the
data. Once the data is preprocessed, it is then modeled to bring into a computational
form. Using the modeled data, hierarchical relationships are produced, organized, and
then labeled to obtain a structure in a hierarchical form of taxonomy.

Non-incremental type of taxonomy generation procedure utilizes the basic process of a
taxonomy generation to generate taxonomy and the process runs every time when the
newly arriving documents are presented into the system. The work TaxGen [23] presented
an automatic taxonomy generation algorithm for unstructured data. The algorithm uses
hierarchical clustering algorithm (HCA) for building the underlying structure for taxonomy
generation. TaxaMiner [11] was also an addition in the pool of existing non-incremental
taxonomy generation techniques. The cluster cohesion is used to extract the taxonomy
among the successive levels of the hierarchical clustering tree. TaxoLearn [24] is also
a non-incremental taxonomy generation algorithm. In this work, taxonomy hierarchy is
built using an unsupervised hierarchical clustering algorithm [25]. On the other hand, an
incremental taxonomy generation or taxonomy evolution technique works in a fashion
that in-occurrence of the new documents in the system the process does not re-build the
entire taxonomy from scratch; instead of that, the new documents are presented in the
current taxonomy based upon the similarities with the existing dataset.

An efficient Image Processing Technique to Measure and Align Vehicle Wheel Cylinder with Cloud Management System

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 119

AdaptTaxa [16] generates taxonomy incrementally for group profiling problem. EvoTaxa
[15] generated taxonomy incrementally for particularly large collection of tags. In
this technique, a graph called association rules graph is produced. In an association
rules graph, the vertices are tags and based on support and confidence values these
tags are connected. Manipulation on the association rules graph is done by taxonomy
extraction step. Only those associations are kept which don’t add to noisy associations.
The technique successfully generated and evolved taxonomy but it does so for tag data
only. IHTCTaxa [17] uses unsupervised incremental hierarchical clustering approach
to generate taxonomy for unstructured textual data. IHTC (Incremental Hierarchical
Term Clustering) algorithm considers the problem of hierarchical clustering as online in
contrary to the batch mode non-incremental hierarchical clustering, like HAC [26] and
Bisect K-means [27].

TIE [18] algorithm was as advancement in the domain of incremental taxonomy
generation. The TIE algorithm takes as an input the following: 1) existing taxonomy 2)
respective hierarchical structure (i.e., clusters hierarchical structure) 3) new documents.
The nearest cluster of new arriving document is recognized based upon the similarity
score. The similarity score range may well identify the level of impact that a new arriving
document has on its closest or nearby cluster. For the level of impact, to accommodate the
new documents in a current hierarchical structure most of the reorganization operators
came into practice. Hence, the current taxonomy develops to identify the change take
place in the data [18]. In short, it was observed that the majority of the available non-
incremental or incremental taxonomy generation approaches produce the good worth
taxonomy. But, these approaches may lack attention on speedily expanding, voluminous
and varying natured big data.

Furthermore, it was observed from the analysis of the literature that underlying technique
for building a hierarchical structure in a taxonomy generation or evolution technique
is mostly clustering-based [28]. Clustering techniques are very useful tools in case an
unstructured data needs to be organized in a hierarchy [29]. In our work, we, particularly
focus on clustering-based incremental taxonomy generation techniques. However, new
challenges of big data make it difficult to apply conventional clustering techniques. Large
data volume and time complexity of clustering algorithms lead to the problem of efficient
deployment of clustering algorithms for big data to get an outcome in a reasonable
amount of time.

Clustering algorithms dealing with big data are generally classified into categories as [30]:
partitioning-based clustering approaches, hierarchical clustering approaches, grid-based
clustering approaches and model-based clustering approaches. All these techniques have
their own advantages and disadvantages. Partitioning-based clustering technique has a
disadvantage that it requires a pre-defined value of K parameter to be given by a user.

https://doi.org/10.51153/kjcis.v5i1.83

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 1 20

For a clustering solution the value of K is often non-deterministic [31]. In a hierarchical
clustering technique once a stage is completed it cannot be un-done. All the hierarchical
clustering algorithms have the limitation stated above [32].

Density-based clustering algorithms contain noisy objects because they work in such a
way in which clusters are described as dense areas separated by low density regions [32],
therefore, not considered appropriate for very huge size datasets. Clustering algorithms
that are based on a model are slow and unsuitable for very large dataset for a classification
problem as they utilize the multivariate probability distribution. The grid size is usually
far smaller than the database size. In case of highly irregular data distributions, using a
single uniform grid might not be a good idea as a single uniform grid will fail to provide
the required clustering quality and also is not able to fulfill the required time requirement
[31].

Moreover, clustering techniques for big data mentioned here are specifically designed for
dealing with big data but to be run on a single machine. New challenges of big data can be
solved using multiple machines clustering techniques that can be able to achieve results
in a much smaller time. Such parallel algorithms divide the data into various smaller data
partitions and distribute them on different machines. This makes the overall running
time of the algorithm smaller and increases its scalability. MapReduce algorithm is a
task partitioning algorithm designed for distributed execution of a task on many servers
which gives a good base for the implementation of such parallel forms of algorithms for
data clustering. To understand its working, the next section discusses the MapReduce
environment and tools used for big data processing.

3.	 Background and Preliminaries

This section discusses prominent tools in the world of big data processing: Apache
Hadoop and Apache Spark which are based on MapReduce paradigm.

A.	 MapReduce

Researchers at Google presented a new programming model called MapReduce [33],
which was able to solve the challenges of efficient processing of massive datasets using
large clusters. MapReduce solves the problems faced in parallelizing the data across
the individual machine’s clusters [33]. MapReduce gives an easy and simple model for
distributed computing by solving the problems of data partition, scheduling of machine
failure and decreasing inter-machine communications. MapReduce is a programming
paradigm that works by decomposing the problem into multiple map and reduce tasks.
An Input is inserted in the form of key or value pairs to the mapper function. This key
value pair input is then passed to reducer which then gives it as an input to the reduce

An efficient Image Processing Technique to Measure and Align Vehicle Wheel Cylinder with Cloud Management System

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 121

function. Associated with the intermediate key, the reducer merges the intermediate
values and finally produced a combined output.
In real world scenarios, several map reduce functions can be applied on various machines
individually in order to achieve parallelization. Apache Hadoop and Apache Spark are
prominent big data processing environments that uses MapReduce algorithm for
processing and analyzing the data [33], which are discussed in the succeeding subsections.

B.	 Apache Hadoop

Hadoop is a software framework based on MapReduce algorithm. The framework can
write applications that can handle huge size of data in-parallel over the large size of
clusters. The size of the data to be processed is in multi-terabyte. The size of the cluster is
of thousands of nodes. Hadoop provides efficient, reliable and fault tolerance system for
processing of big data. There are many different tools and products in Hadoop ecosystem.

The two important components of Hadoop ecosystem are HDFS and YARN. Hadoop
Distributed File System [34], commonly referred as HDFS, is a single reliable file system.
HDFS is reliable file system as it offers the monitoring of failures of data blocks. Each data
block has its replica stored on another block and incase of failure data can be retrieved
from other block. This feature of HDFS makes it easier to use commodity hardware for
processing of big data. YARN stands for Yet Another Resource Negotiator. It separates
MapReduce from resource manager, workflow manager and fault-tolerance. It allows
other frameworks to be built on top of it. The original Hadoop framework was modified
to use YARN. The initial version of Hadoop had technical deficiencies [34] that the current
system is dealing by introducing a structure called linear data flow on the distributed
computing programs in the Hadoop cluster. Hadoop gets an input data from the disk,
perform mapping function on the data, reduce results of map function, and then finally,
stores reduce results on the disk. Everything was to be read and written to disk. This
made the implementation of the iterative algorithms difficult [35]. An Iterative algorithm
works on dataset multiple times in a loop and then applying data analysis on side. These
training algorithms used in systems having machine learning standards. Current version
of Hadoop does not have the capability for processing of iterative machine learning
algorithms and if processed it will take a lot of time to finish a job. This provided a need
of a technology that would solve these issues. This leads to the development of Apache
Spark [36].

C.	 Apache Spark

Apache Spark was developed to facilitate the iterative and machine learning algorithms.
Spark was born along with its important component the Resilient Distributed Datasets
(RDDs) [36]. The RDDs perform in-memory computations on big data. It runs on large

https://doi.org/10.51153/kjcis.v5i1.83

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 1 22

clusters and nodes. It runs to provide fault-tolerance. Apache Spark also has many
discretized streams. The discretized streams were developed in order to provide high-
level programming API. An efficient fault tolerance and consistency achieves by high
level programming APIs. Spark is one of most primitive high-level systems that not only
supported the distributed batch and stream computation but also the iterative querying.

The key feature of Spark is an RDD [36]. RDDs are basically “immutable objects”. These
objects are usually stored into different partitions. When one RDD is modified, a new RDD
is created. A new RDD generation leaves the previous RDD unconverted. It provides fault
tolerance due to intelligence that decides when to regenerate and when to re-compute a
dataset. The groundwork of a complete project Spark Core may deliver the scheduling,
distribute the task, and fulfill essential input output functionalities. They are revealed by an
Application Programming Interface (API). This API is centered on RDD abstraction. RDDs
consist of two different kinds of operations: transformations and action transformations.
Transformations always return pointers to the latest new RDDs. Another transformation
called an Action transformation may return results to a driver program. Different
transformations and actions can work together in a Spark job. MLlib is a distributed
machine learning library framework that operates on the top of Spark core. The spark
job operates nine times efficiently and faster than the disk-based implementation due to
distributed memory-centered Spark architecture. Various machine learning algorithms
has been proposed and transported to MLlib that enables ML large scale pipelines.

D.	 Comparison of Tools for Implementation

In order to support our choice of Apache Spark, we have demonstrated the suitability of
Apache Spark (MLlib) for machine learning applications by comparing the performance
of the two parallelization frameworks, i.e. Spark and Hadoop.
The comparison table of Apache Hadoop and Apache Spark with major differences is
given in Table 1.

Table 1: Comparison Table

	 Attributes	 Apache Hadoop	 Apache Spark
	 Unified APIs	 No	 Yes
	 I/O Operations	 Disk-based	 Memory-based
	 Processing Speed	 Slow	 Fast
	 Execution	 Slow	 Fast
	 ML Support	 Limited (for newer machines)	 Full

It is also worth mentioning here that Apache Spark fully supports agglomerative
clustering being used in the proposed technique whereas Apache Mahout does not

An efficient Image Processing Technique to Measure and Align Vehicle Wheel Cylinder with Cloud Management System

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 123

support agglomerative clustering. It supports two algorithms for clustering i.e. 1) Canopy
clustering 2) K-means clustering.

The next section contains the well demonstrated discussion of the proposed technique
in detail.

4.	 Proposed Technique

 This section is further divided into two subsections. Taxonomy generation algorithm is
discussed in the first subsection and the second subsection discusses taxonomy evolution
process for updating taxonomy on arrival of new documents in a dataset. Both the
taxonomy generation and evolution algorithms are based on a parallelization framework.

A.	 Taxonomy Generation

The proposed technique performs taxonomy generation on Apache Spark framework
and has been divided into six general steps: loading the data, data pre-processing, data
modeling, hierarchy formation, node labeling and conversion into tree graph. The process
has been explained in detail in our work [37], highlight of which is below:

1.	 Loading the Data: Resilient distributed dataset (RDD) is used to effectively load
text documents as input.

2.	 Data Pre-processing: In the pre-processing step, stop-word removal using NLTK
and stemming using Porter stemmer [38] have been performed.

3.	 Data Modeling: A feature vectorization method called term frequency-inverse
document frequency (TF-IDF) is used in this step.

	 In Apache Spark, TF-IDF is performed in MapReduce paradigm whereas, TF-IDF
is not calculated in a simple fashion, rather several number of map and reduce
tasks are carried out for the implementation of TF-IDF. Apache Spark implements
it using hashing trick or kernel trick. Hashing trick is a quick and compact way
of vectorizing features. The hash function used here is MurmurHash32. Figure 1
demonstrates this process of vectorization and hashing.

4.	 Hierarchy Formation: To form a hierarchy, hierarchical agglomerative clustering
approach is used. For implementation of this phase, Parallel prims algorithm
is used. This algorithm is available in open-source Spark’s library. First the
algorithm divides the dataset into multiple sub-datasets. A serial minimum
spanning tree algorithm is applied locally on each of the sub problems on it.
Spark’s programming model supports iterative algorithms because of RDD. In
RDD the computation is carried out only in the RDDs that are required at the
moment. In an iterative program, RDDs are consumed in a loop. This phase is

https://doi.org/10.51153/kjcis.v5i1.83

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 1 24

called Map phase. Each MST is

Figure 1: Implementation of TFIDF as HashingTF on Apache Spark

	 a cluster itself. Now multiple clusters that were created in the map steps are re-
arranged in reduce steps based on the distance between two clusters iteratively and
arranged in the form one bigger cluster. This is the Reduce phase. The information
of distance between the trees clusters are maintained in the similarity matrix Sgen.

5.	 Node Labeling: The hierarchical composition built in the preceding step is
unlabeled. This phase acquires labels for these unlabeled clusters. For labeling
purpose, titles of documents in a cluster were chosen as labels. The titles were
selected as labels because titles are easier to read as compared with the list of top
terms in a cluster [18]. The technique basically labels a cluster with the title of the
document that is attached to the edge having minimum weight. By the end of this
step, the taxonomy Tgen has been created.

6.	 Conversion into a Tree Graph: To use this taxonomy for evolution subsequently,
Tgen is then transformed into a Newick Tree Graph3. Newick is a standard
for representing trees in a computer readable form by making use of nested
parentheses as shown in Figure 2. The bottom-most node in the tree is an interior
node. Matched parentheses represent interior nodes. In between them, there are
the images of nodes that are instantly descended from a node which is comma
separated. Real numbers are used to incorporate branch lengths. This represents
the length of a branch immediately below a node.

An efficient Image Processing Technique to Measure and Align Vehicle Wheel Cylinder with Cloud Management System

Figure 2: Snippet of a generated Newick Tree

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 125

B.	 Taxonomy Evolution
New documents when added in a dataset for which taxonomy is being maintained,
they followed the same process of taxonomy generation as mentioned in the previous
subsection. Once taxonomy is generated, a new tree structure Tevo is constructed that
represents the newly introduced documents. A similarity matrix Sevo is also produced.
Finally for the taxonomy evolve step, Tree Merge [40] technique is used. The Tree Merge
practice takes following as input: the existing Tgen , new taxonomy T_evo, the existing
similarity matrix Sgen and the new similarity matrix Sevoas input. After the input has been
taken, the next step is the building of a compatibility super tree TS.

NTMerge algorithm is used for building compatibility super tree [41]. The super tree
method constructs trees from smaller trees for overlapping subsets of taxonomies.
NJMerge basically runs on an input pair of Tgen and Tevo, and it also takes similarity matrices
Sgen and Sevo as auxiliary information. As mentioned earlier, in Newick trees numbers are
used to represent branch length. NJMerge results the correct neighbors of the tree Tevo by
comparing and analyzing the branch length of tree structure Tevo withTgen. Branch lengths
sum achieves for all the branches of both tree structures. The pair having smallest length
is called a true neighbor. Once the true neighbors have been identified, the next step is
the merging of the two trees. Strict Consensus Merger is used for merging pair of trees in
which a merged tree. The proposed technique successfully generates a taxonomy for text
documents from a given corpora. The technique also successfully evolves the previously
created taxonomy in a very short time. The foundation of the algorithm is a MapReduce
in which the capability to minimize the time by parallel data processing and facilitates the
fault tolerance feature by using distributed file system. MapReduce environment aids for
improving the scalability challenges of an existing taxonomy generation and taxonomy
evolution techniques. The algorithm runs on Apache Spark environment. The comparison
between our proposed technique and existing taxonomy generation and evaluation with
respect to running time and clustering quality has been done. The next section discusses
the evaluation of the proposed technique.

5.	 Evaluation

The technique presented in this research work was evaluated on a textual dataset based
upon quality and time parameters. Various experiments were executed using the following
experimental configurations:
	 1.	 Processor: Intel Core i5
	 2.	 RAM: 32 GB
	 3.	 Apache Spark version: 2.3
	 4.	 Apache Hadoop version: 2.10.0

In the first set of experiments, the generation part of the proposed technique was assessed

https://doi.org/10.51153/kjcis.v5i1.83

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 1 26

by comparing it with a current non-incremental taxonomy generation method TaxGen.
In the second set of experiments, the entire algorithm (generation as well as evolution)
was evaluated by comparing it with the current incremental taxonomy generation
methodology TIE. A textual dataset of ACM scholarly articles, taken from [18] was used
for performing these experiments. In the third set of experiments, the scalability of the
methodology was evaluated using a separate cluster of Apache Spark, on an individual
machine. Due to the limited size of the ACM dataset for testing the scalability PubMed
dataset comprising of 17785 documents was used. Last but not least, the focus has been
made on the comparison of the two parallelization frameworks namely, Apache Hadoop
and Apache Spark. The running time of the parallelization part of the proposed technique
was compared on both Apache Hadoop and Apache Spark. The rest of this section will
discuss evaluation metrics, experiments, and test results.

A.	 Evaluation Metrics for Clustering Quality

To evaluate the quality of hierarchical clustering, Silhouette’s score and Davies-Bouldin’s
score are being used as quality metrics [cite our previous work].

1.	 Silhouette’s Score: We can compute the Silhouette’s score [42] by using the
distance called intra cluster distance and mean closest cluster distance for every
data point. The range of Silhouette’s score is between [-1, +1]. The values near
zero may represent an overlapping cluster. The values that are negative may
signify that the data point or document has been assigned to wrong cluster. The
higher silhouette value shows that the document matched or assigned to its own
cluster and inadequately matched to the other nearby clusters.

	
2.	 Davies-Bouldin’s Score: Davies-Bouldin’s [43] score can be computed as by finding

the ratio of sum of within-cluster scatter to the between-cluster separation. In a
Davies-Bouldin’s score, better clustering quality can be achieved by getting lower
score. Zero is the minimum score. If two algorithms are being compared the
algorithm with lower score will have well-defined and well-separated clusters.

	
B.	 Experiments and Results

Our obtained taxonomy consists of two different kinds of evaluation. The first type is
called time-based, whereas the second type is quality-based. We obtained efficiency of
time by running time of algorithms for taxonomy generation and evolution. To evaluate
hierarchical clustering quality, Silhouette’s score and Davies-Bouldin’s score are being
used. Our evaluation results are given below:
	
1.	 Experiments for Generation Process: We compared the generation part of our

An efficient Image Processing Technique to Measure and Align Vehicle Wheel Cylinder with Cloud Management System

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 127

technique with an existing taxonomy generation technique, TaxGen [23], by
comparing the running time and clustering quality. Initially, 220 documents were
involved for taxonomy generation process. Newer documents were then added
to evaluate the generation process of taxonomy, which shows better results for
the proposed technique [37]. Figure 3(a) & 3(b) shows the hierarchical clustering
quality of generated taxonomies, whereas the running time is shown in Figure 4.

2.	 Experiments for Evolution Process: We compared the evolution part of our
proposed method with the evolution of existing method, TIE [18] by performing
the result comparisons of hierarchical clustering quality and running rime. To
generate the taxonomy, 200 documents were initially used for the taxonomy
evolution process using proposed technique and TIE. Then there was a gradually
increase in dataset and taxonomy evolution was done using both the methods. The

Figure 3(a): Results for Quality-Based
Evaluation - Taxonomy Generation

Process

Figure 3(b): Results for Quality-Based
Evaluation - Taxonomy Generation

Process

Figure 4: Results for Time-Based Evaluation - Taxonomy Generation Process

https://doi.org/10.51153/kjcis.v5i1.83

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 1 28

Figure 5(b): Quality Based Evaluation
Results-Taxonomy Evolution Process

Figure 6: Time-Based Evaluation Results- Taxonomy Evolution Process

hierarchical clustering quality scores are shown in Figure 5(a) & 5(b), whereas
Figure 6 indicates running time results for both the techniques. The results
obtained in both the cases favors the proposed technique [37].

3.	 Experiments for Testing the Scalability: The scalability of the proposed model was
tested using a separate cluster of Apache Spark on an individual machine. Due to
the limited size of the ACM scholarly articles dataset obtained from [18], for testing
the scalability, a dataset namely PubMed was used. This dataset is comprised of
17785 documents. Using 5000 text documents initial taxonomy was generated
and after that by adding 5000 documents dataset was gradually increased for the
procedure of evolution. Clustering quality for generation and evolution through
the proposed methodology was evaluated and the running time was assessed as
well. The results of the experiment are shown in Figures 7(a), 7(b) & 7(c), which
again show the better cluster.

An efficient Image Processing Technique to Measure and Align Vehicle Wheel Cylinder with Cloud Management System

Figure 5(a): Quality Based Evaluation
Results-Taxonomy Evolution Process

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 129

4.	 Experiments on Parallelization Framework: In this part of experiment, focus has
been made on the comparison of the two parallelization frameworks namely,
Apache Hadoop and Apache Spark. Running time of the parallelization part of the
proposed technique was compared on both; Apache Hadoop as well as Apache
Spark. For the sake of this experiment, we only generated taxonomy, Newick trees
were not generated for this experiment. The algorithm was run on 3 cores of
Apache Spark and compared it to the processing capability of Apache Hadoop. 3
cores were chosen because that is the minimum number of cores that can be chosen
for running of any Spark job. Table 2 shows the running time of the proposed
technique on both the environments. It can be observed that the running time of
Apache Spark is much smaller as compared with Apache Hadoop.

https://doi.org/10.51153/kjcis.v5i1.83

Figure 7(a): Scores showing the
Scalability of the Proposed Technique

Figure 7(b): Scores showing the
Scalability of the Proposed Technique

Figure 7(c): Scores showing the Scalability
of the Proposed Technique

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 1 30

Table 2: Apache Spark vs. Apache Hadoop Based on the Running Time of the
Proposed Technique

	 Dataset	 Running Time (secs)
		 Apache Spark	 Apache Hadoop
	 200	 7.97	 241.8
	 300	 6.29	 369.6
	 400	 8.16	 571.8
	 500	 10.11	 616.2
	 600	 12.28	 673.8
	 700	 14.23	 842.4
	 800	 16.68	 963
	 900	 18.57	 1083.6
	 1000	 19.48	 1228.8
	 1500	 42.96	 1830.6
	 2000	 45.55	 2310

On the basis of running time of the technique on both the environments, their running
time ratio, i.e. 〖RT〗_r was calculated. The sum of the running time of the algorithm was
considered for Apache Spark and Apache Hadoop both and their ratio is calculated as
given in (11). According to this time ratio, Spark is 53.05 times faster than that of Hadoop.

(11)

Spark performance, has found out to be optimal over Hadoop as evaluated by processing
speed due to following reasons:

1.	 Spark performs computation using in-memory calculation. It runs a selected part
of a MapReduce task and is not bound by input-output concerns every time.

2.	 Spark’s directed acyclic graphs support optimization between steps, whereas any
cyclic interconnection between MapReduce steps and levels is not possessed by
Hadoop. This means performance tuning cannot be done at that level.

Hence both the theoretical aspects as discussed above and in Section 3.4, as well as the
experimental results favor Apache Spark for the case of the proposed methodology.

Apache Spark basically comes with various units and sub-units that aid in the process

An efficient Image Processing Technique to Measure and Align Vehicle Wheel Cylinder with Cloud Management System

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 131

of running of Spark jobs. Tuning the resources, parallelism, and using different data
representation affect Spark job performance. Schema of data (the way data is arranged)
and number of cores for running a job are important factors. The --executor-cores specifies
the number of cores when submitting a Spark job. A Spark job is submitted by invoking
spark-submit. In pyspark --executor-cores flag are set from the command line. This can
also be achieved by using the spark-defaults.conf file or a SparkConf object and setting the
spark.executor.cores property. Further experiments were performed to evaluate running
time of the evolution process on different number of Apache Spark cores. In the proposed
technique running time of taxonomy evolution process against different number of
Apache Spark cores is shown in Table 3.

Table 3: Running Time for Taxonomy Evolution on Different
No. of Apache Spark Cores

Size of data		 Running Time (secs)
	 3 cores	 5 cores	 8 cores
100+100	 7.97	 6.79	 6.29
200+100	 6.29	 7.12	 6.25
300+100	 8.15	 8.29	 8.08
400+100	 10.11	 9.72	 9.83
500+100	 12.28	 12.09	 11.99
600+100	 14.23	 14.06	 13.68
700+100	 16.68	 15.98	 15.44
800+100	 18.57	 18.07	 17.69
900+100	 19.48	 19.87	 18.46
1100+100	 29.73	 24.56	 23.34
1200+100	 34.97	 26.78	 27.12
1300+100	 39.14	 30.89	 29.87
1400+100	 42.96	 32.02	 30.38
1500+100	 44.67	 35.44	 33.43
1600+100	 45.23	 37.89	 36.32
1700+100	 45.76	 39.34	 38.56
1800+100	 46.26	 41.56	 40.53
1900+100	 47.55	 43.05	 42.67

In Table 3, it can be seen that when taxonomy evolution process was run on different
number of Spark cores, the running time of algorithm for 8 cores gives the minimum
time. When we specify the number of cores to be 8 that means each executor runs 8
tasks at a given time. It should be noted here that initially when dataset is small the time
taken by all three cores to evolve taxonomy is comparable but as the dataset increases the
significant difference can be seen in the running time. The impact of using different cores

https://doi.org/10.51153/kjcis.v5i1.83

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 1 32

can be better visualized when dataset is even larger.

C.	 Discussion

In this section, the proposed methodology is assessed and evaluated by comparing it with
an existing algorithm of taxonomy generation i.e., TaxGen. Evolution part of the technique
has also been compared with another algorithm of incremental taxonomy generation i.e.,
TIE. The technique has been assessed and evaluated on the basis of the running time
and quality of clustering. Clustering quality was evaluated using two different techniques
i.e., 1) Silhouette’s score 2) Davies Bouldin’s score. It was observed that the proposed
technique shows better clustering quality when compared with TaxGen and TIE.
It is evident that the running time of the proposed methodology is significantly smaller as
compared to its counter parts. Due to the usage of map reduce framework, the asymptotic
complexity of the proposed technique is also reduced from O(n^3) for hierarchical

clustering to where k is the number of nodes in which task is divided in map
reduce setup.

The technique was also evaluated by running it on Apache Spark and Apache Hadoop
both and their running time was compared. It was found that Apache Spark generated
taxonomy in much smaller time as compared with Apache Hadoop. So, it can be said that
for a clustering problem like taxonomy generation Apache Spark is a better choice. It
was also evaluated by experiment that by using how many cores of Apache Spark the
proposed technique can evolve taxonomy faster. It was found that when data size is small
number of cores do not matter. As the size of data grows using 8 cores can bring significant
time improvement. The execution time taken for an analysis to perform is critical in big
data applications. The execution time is measured to evaluate the performance. Smaller
execution times indicate that the program runs fast and gives good performance. It should
also be noted that the proper resource utilization is also crucial in case of large datasets.
A good application should give high performance with minimal resource utilization.
Since the technique utilizes MapReduce algorithm as its core technique while running
on Apache Spark, this makes the technique scalable. The next chapter concludes this
research work.

5.	 Conclusion and Future Work

This research work has reviewed the existing techniques of taxonomy generation and
evolution from the perspective of today’s data which is particularly fast-evolving and
voluminous. It was identified that in the modern era of big data, it is required that there
must be some efficient and scalable taxonomy generation and evolution techniques to
handle this type of data. Although some work has been done in the field of hierarchical

An efficient Image Processing Technique to Measure and Align Vehicle Wheel Cylinder with Cloud Management System

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 133

clustering for substantial datasets, little focus has been made on generating and evolving
taxonomy. As per the available information, none of the existing techniques have focused
on the idea of parallelization to develop an effective and scalable algorithm for the
process of taxonomy generation and evolution. In this research work, a novel and unique
technique has been developed for the process of taxonomy generation and evolution
which is based upon the MapReduce paradigm using the framework of Apache Spark has
the ability to minimize the time by parallel data processing. It also provides the feature of
fault tolerance by using the distributed file system (DFS).

The proposed technique is evaluated on the basis of the clustering quality and the time
takes to generate and evolve taxonomy in contrast to the present taxonomy generation
(TaxGen) and evolution (TIE) methodologies. It is quite clear from the results obtained
so far, that the proposed methodology consumes less time for taxonomy generation and
evolution. Evaluation based on quality metrics has been done by applying Silhouette’s
and Davies-Bouldin’s scores. When compared with the existing techniques, both the
indices verify improved hierarchical clustering for the proposed methodology. Some
experiments are also performed for comparing the two parallelization frameworks,
namely Apache Hadoop and Apache Spark using 3 cores setting. The running time of
the parallelization part of the proposed technique has been compared on both, Apache
Hadoop and Apache Spark. Spark’s performance is observed to be optimum over Hadoop
as measured by processing speed. Furthermore, some specific experiments have been
also performed to test the scalability of the suggested technique by using a specifically
large dataset. The time and quality-based evaluation have made it clear that the use of
the MapReduce environment has improved the scalability issues of current techniques of
taxonomy generation and evolution.

There were certain challenges faced during the implementation of algorithms. Initially,
we had decided to use Hadoop to perform taxonomy generation and evolution. We faced
no issue in performing taxonomy generation on Hadoop but for evolution, we ran into a
problem as we are using Newick tree graph technique for the evolution of taxonomy, and
Hadoop’s scope is limited when it comes to Newick graphs. Hence, we selected Apache
spark as it supports map-reduce as well as Newick graph techniques.

This work too is bound to observe some limits. The proposed model is capable of evolving
a taxonomy that has been converted into a Tree graph only. Prospectively, we are in the
view of working on proposing a more generalized algorithm that can upgrade/evolve any
taxonomy being given as an input. The labeling technique and the hierarchical clustering
quality of the taxonomy can be further improved. In the future, we also strategize to
evaluate our proposed technique using cloud computing to acquire better results in terms
of scalability and performance in the spirit of big data.

https://doi.org/10.51153/kjcis.v5i1.83

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 1 34

References

[1]	 M. Zwolenski, and L. Weatherill, "The Digital Universe: Rich Data and the Increasing
Value of the Internet of Things,"Journal of Telecommunications and the Digital
Economy, vol. 2, no. 3, pp. 1—47, 2014.

[2] 	 Rajesh Math. “Big Data Analytics: Recent and Emerging Application in Services
Industry. Part of the Advances in Intelligent Systems and Computing book series
(AISC, volume 654)” SpringerDoi: 978-981- 10-6620-7_21

[3] 	 Coronel, C., Morris, S., Rob, P. (2013). Database Systems: Design, Implementation,
and Management, (10th. Ed.). Boston: Cengage Learning.

[4] 	 ImenChebbi, WadiiBoulila, ImedRiadh Farah.“Big Data: Concepts, Challenges and
Applications”Springer Doi: 978-3-319-24306-1_62

[5] 	 GeorgiosSkourletopoulos, Constandinos X. Mavromoustakis, George Mastorakis,
Jordi MongayBatalla, CiprianDobre, Spyros Panagiotakis and EvangelosPallis:
Big Data and Cloud Computing.“A Survey of the State-of-the-Art and Research
Challenges” SpringerDoi: 9783319451435c2

[6] 	 M. S. Paukkeri, A. P. García-Plaza, V. Fresno, R. M. Unanue, and T. Honkela, "Learning
a taxonomy from a set of text documents," Applied Soft Computing, vol. 12, no. 3, pp.
1138–1148, 2012.

[7] 	 R. Sujatha, R. Bandaru, and R. Rao, "Taxonomy Construction Techniques–Issues and
Challenges," Indian Journal of Computer Science and Engineering, vol. 2, no. 5, pp.
661-671, 2011.

[8] 	 H. Hedden, The Accidental Taxonomist, Information Today, Inc., 2016.
[9] 	 D. Sánchez, and A. Moreno, "Automatic Generation of Taxonomies from the WWW,"

In International Conference on Practical Aspects of Knowledge Management, pp.
208-219, Vienna, Austria, December 2004.

[10] 	 H. Delgado, Taxonomy Organization of information of Web Content, 2019. https://
disenowebakus.net/en/taxonomyinformation-web-content

[11] 	 V. Kashyap, C. Ramakrishnan, C. Thomas, and A. Sheth, "TaxaMiner: an
experimentation framework for automated taxonomy bootstrapping," International
Journal of Web and Grid Services, vol. 1, no. 2, pp. 240–266, 2005.

[12] 	 D. Boley, "Principal Direction Divisive Partitioning," Data Mining and Knowledge
Discovery, vol. 2, no. 4, pp. 325–344, 1998.

[13] 	 L. E. Anke, H. Saggion, and F. Ronzano, " TALN-UPF: Taxonomy Learning Exploiting
CRF-based Hypernym Extraction on Encyclopedic Definitions," In Proceedings
of the 9th International Workshop on Semantic Evaluation, pp. 949–954, Denver,
Colorado, June 2015.

[14] 	 P. Velardi, S. Faralli, and R. Navigli, "Ontolearn Reloaded: A Graphbased Algorithm
for Taxonomy Induction," Computational Linguistics, vol. 39, no. 3, pp. 665–707,
2013.

An efficient Image Processing Technique to Measure and Align Vehicle Wheel Cylinder with Cloud Management System

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 135

[15] 	 Yao, B. Cui, G. Cong, and Y. Huang, "Evolutionary Taxonomy Construction from
Dynamic Tag Space," World Wide Web, vol. 15, no. 5, pp. 581–602, 2012.

[16] 	 L. Tang, H. Liu, J. Zhang, N. Agarwal, and J. J. Salerno, "Topic Taxonomy Adaptation
for Group Profiling," ACM Transactions on Knowledge Discovery from Data (TKDD),
vol. 1, no. 4, pp. 1–28, 2008.

[17] 	 R. M. Marcacini, and S. O. Rezende, "Incremental Construction of Topic Hierarchies
using Hierarchical Term Clustering.," In Software Engineering and Knowledge
Engineering (SEKE), pp. 553–558. Redwood City, California, USA, July 2010.

[18] 	 R. Irfan, S. Khan, K. Rajpoot, and A. M. Qamar, "TIE Algorithm: a Layer over Clustering-
based Taxonomy Generation for Handling Evolving Data," Frontiers of Information
Technology Electronic Engineering (FITEE), vol. 19, no. 6, pp. 763-782, 2018.

[19] 	 X. Wu, X. Zhu, G. Q. Wu, and W. Ding, "Data Mining with Big Data," IEEE Transactions
on Knowledge and Data Engineering, vol. 26, no. 1, pp. 97–107, 2013.

[20] 	 A. McAfee, E. Brynjolfsson, T. H. Davenport, D. J. Patil, and D. Barton, "Big data: The
Management Revolution," Harvard Business Review, vol. 90, no. 10, pp. 60–68, 2012.

[21] 	 M. J. Embrechts, C. J. Gatti, J. Linton, and B. Roysam, "Hierarchical Clustering for
Large Data Sets," In Advances in Intelligent Signal Processing and Data Mining, vol
410, pp. 197—233, Springer, 2013.

[22] 	 R. Babbar, I. Partalas, E. Gaussier, M. R. Amini, and C. Amblard, "Learning Taxonomy
Adaptation in Large-scale Classification," The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 3350–3386, 2016.

[23] 	 A. Muller, J. Dorre, P. Gerstl, and R. Seiffert, "The TaxGen Framework: Automating
the Generation of a Taxonomy for a Large Document Collection," In Proceedings of
the 32nd Annual Hawaii International Conference on Systems Sciences HICSS-32,
Hawaii, USA, 1999.

[24] 	 E. A. Dietz, D. Vandic, and F. Frasincar, "Taxolearn: A Semantic Approach to Domain
Taxonomy Learning," In 2012 IEEE/WIC/ACM International Conferences on Web
Intelligence and Intelligent Agent Technology, pp. 58-65, Macau, China, 2012.

[25] 	 M. Steinbach, G. Karypis, and V. Kumar, "A Comparison of Document Clustering
Techniques," In TextMining Workshop at KDD2000, May 2000.

[26] 	 H. Schütze, C. D. Manning, and P. Raghavan, Introduction to Information Retrieval,
Cambridge University Press, 2008.

[27] 	 A. K. Jain, "Data Clustering: 50 years beyond K-means," Pattern Recognition Letters,
vol. 31, no. 8, pp. 651–666, 2010.

[28] 	 R. Irfan, S. Khan, M.A. Abbas, and A. A. Shah, "Determining Influential Factors and
Challenges in Automatic Taxonomy Generation: A Systematic Literature Review of
Techniques 1999-2016," Information Research: An International Electronic Journal,
vol. 24, no. 2, 2019.

[29] 	 V. Subramaniyaswamy, V. Vijayakumar, R. Logesh, and V. Indragandhi, "Unstructured
Data Analysis on Big Data using MapReduce," Procedia Computer Science, pp. 456–
465, 2015

https://doi.org/10.51153/kjcis.v5i1.83

KIET Journal of Computing & Information Sciences [KJCIS] | Volume 5 | Issue 1 36

[30] 	 A. S. Shirkhorshidi, S. Aghabozorgi, T. Y. Wah, and T. Herawan, "Big Data Clustering: A
Review," In International Conference on Computational Science and its Applications,
Springer, 2014, pp. 707– 720.

[31] 	 D. Moulavi, P. A. Jaskowiak, R. J. Campello, A. Zimek, and J. Sander, "Density-based
Clustering Validation," In Proceedings of the 2014 SIAM International Conference
on Data Mining, Philadelphia, Pennsylvania, USA, April 2014.

[32] 	 B. Zerhari, A. A. Lahcen, and S. Mouline, "Big Data Clustering: Algorithms and
Challenges," In Proc. of Int. Conf. on Big Data, Cloud and Applications (BDCA’15),
Tetuan, Morocco, May, 2015.

[33]	 J. Dean, and S. Ghemawat, "MapReduce: Simplified Data Processing on Large
Clusters," Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

[34]	 K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The Hadoop Distributed File
System," In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), Incline Village, NV, May, 2010.

[35] 	 J. Lin, "Mapreduce is good enough? if all you have is a hammer, throw away everything
that’s not a nail!," Big Data, vol. 1, no. 1, pp. 28-37, 2013.

[36] 	 M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave et al., "Apache Spark:
A Unified Engine for Big Data Processing," Communications of the ACM, pp. 56–65,
2016.

[37] 	 K. Aalijah and R. Irfan, "Scalable Taxonomy Generation and Evolution on Apache
Spark," 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data
Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/
CBDCom/CyberSciTech), 2020, pp. 634-639, doi: 10.1109/DASC-PICom-CBDCom-
CyberSciTech49142.2020.00110.

[38] 	 A. G. Jivani, "A comparative study of stemming algorithms," International Journal of
Computer Technology and Applications, vol. 2, no. 6, pp. 1930-1938, 2011.

[39] 	 F. Murtagh, and P. Legendre, " Ward’s Hierarchical Agglomerative Clustering Method:
Which Algorithms Implement Ward’s Criterion?," Journal of Classification, vol. 31,
no. 3, pp. 274-295, 2014.

[40] 	 E. K. Molloy, and T. Warnow, "TreeMerge: A New Method for Improving the Scalability
of Species Tree Estimation Methods," Bioinformatics, vol. 35, no. 14, pp. 417-426,
2019.

[41] 	 E. K. . W. T. Molloy, "NJMerge: A Generic Technique for Scaling Phylogeny Estimation
Methods and its Application to Species Trees," In RECOMB International conference
on Comparative Genomics, Magog-Orford, QC, Canada, 2018.

[42] 	 S. Petrovic, "A Comparison between the Silhouette Index and the Davies-Bouldin
Index in Labelling IDs Clusters," In Proceedings of the 11th Nordic Workshop of
Secure IT Systems, Linköping, Sweden, October 2006.

[43] 	 J. Xiao, J. Lu, and X. Li, "Davies Bouldin Index based Hierarchical Initialization
K-means," Intelligent Data Analysis, vol. 21, no. 6, pp. 1327-1338, 2017.

An efficient Image Processing Technique to Measure and Align Vehicle Wheel Cylinder with Cloud Management System

