Rice Varieties (LULC) Classification using Artificial Neural Network through Landsat 8 OLI Image
PDF

Keywords

Land Use / Land Cover, Crop Classification, Remote Sensing

How to Cite

Talha Virk, & MUHAMMAD USMAN. (2025). Rice Varieties (LULC) Classification using Artificial Neural Network through Landsat 8 OLI Image. KIET Journal of Computing and Information Sciences, 7(2), 1-34. https://doi.org/10.51153/kjcis.v7i2.225

Abstract

Multi-temporal and multi-spectral remote sensing images are good instruments that may help traditional agricultural systems by properly monitoring and calculating crop yields prior to harvesting. Traditional agricultural systems mostly depend on limited ground-survey data. Time-series satellite images of vegetation phenology serve a significant role in vegetation monitoring and land-cover categorization because they can record vegetation information at various development phases. It's impossible to overstate how important remote sensing has become in the last several decades. In order to monitor land surface dynamics, natural resource management, and the general status of the ecosystem, remote sensing sensors have been used from space. In order to begin vegetation conservation and restoration projects, it is necessary to know the existing status of plant cover. Several early studies of ecosystems and land cover have used agricultural census data to map paddy rice fields at the global and regional scales.

https://doi.org/10.51153/kjcis.v7i2.225
PDF

References

W. Liu, J. Dong, K. Xiang, S. Wang, W. Han, and W. Yuan, “A sub-pixel method for estimating planting fraction of paddy rice in Northeast China,” Remote Sens. Environ., vol. 205, pp. 305–314, 2018.

M. Boschetti et al., “PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series,” Remote Sens. Environ., vol. 194, pp. 347–365, 2017.

E. Elert, “Rice by the numbers: A good grain.,” Nature, vol. 514, no. 7524, pp. S50–S50, 2014.

S. Moharana and S. Dutta, “Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery,” ISPRS J. Photogramm. Remote Sens., vol. 122, pp. 17–29, 2016.

Y. Shao et al., “Rice monitoring and production estimation using multitemporal RADARSAT,” Remote Sens. Environ., vol. 76, no. 3, pp. 310–325, 2001.

M. Dabboor, B. Montpetit, and S. Howell, “Assessment of the high resolution SAR mode of the RADARSAT constellation mission for first year ice and multiyear ice characterization,” Remote Sens., vol. 10, no. 4, p. 594, 2018.

Hasituya, Z. Chen, F. Li, and Hongmei, “Mapping plastic-mulched farmland with C-band full polarization SAR remote sensing data,” Remote Sens., vol. 9, no. 12, p. 1264, 2017.

G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7405–7415, 2016.

D. Marmanis, M. Datcu, T. Esch, and U. Stilla, “Deep learning earth observation classification using ImageNet pretrained networks,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 105–109, 2015.

G. Fu, C. Liu, R. Zhou, T. Sun, and Q. Zhang, “Classification for high resolution remote sensing imagery using a fully convolutional network,” Remote Sens., vol. 9, no. 5, p. 498, 2017.

X. Pan and J. Zhao, “A central-point-enhanced convolutional neural network for high-resolution remote-sensing image classification,” Int. J. Remote Sens., vol. 38, no. 23, pp. 6554–6581, Dec. 2017, doi: 10.1080/01431161.2017.1362131.

C. Zhang et al., “A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification,” ISPRS J. Photogramm. Remote Sens., vol. 140, pp. 133–144, 2018.

F. Hu, G.-S. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery,” Remote Sens., vol. 7, no. 11, pp. 14680–14707, 2015.

K. Nogueira, O. A. Penatti, and J. A. Dos Santos, “Towards better exploiting convolutional neural networks for remote sensing scene classification,” Pattern Recognit., vol. 61, pp. 539–556, 2017.

C. Gómez, J. C. White, and M. A. Wulder, “Optical remotely sensed time series data for land cover classification: A review,” ISPRS J. Photogramm. Remote Sens., vol. 116, pp. 55–72, 2016.

E. F. Lambin, M. D. Rounsevell, and H. J. Geist, “Are agricultural land-use models able to predict changes in land-use intensity?,” Agric. Ecosyst. Environ., vol. 82, no. 1–3, pp. 321–331, 2000.

M. J. Steinhausen, P. D. Wagner, B. Narasimhan, and B. Waske, “Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions,” Int. J. Appl. Earth Obs. Geoinformation, vol. 73, pp. 595–604, 2018.

I. Becker-Reshef et al., “Strengthening agricultural decisions in countries at risk of food insecurity: The GEOGLAM Crop Monitor for Early Warning,” Remote Sens. Environ., vol. 237, p. 111553, 2020.

Y. Xu et al., “Tracking annual cropland changes from 1984 to 2016 using time-series Landsat images with a change-detection and post-classification approach: Experiments from three sites in Africa,” Remote Sens. Environ., vol. 218, pp. 13–31, 2018.

F. Q. Feng QuanLong, G. J. Gong JianHua, L. J. Liu JianTao, and L. Y. Li Yi, “Monitoring cropland dynamics of the Yellow River Delta based on multi-temporal Landsat imagery over 1986 to 2015.,” 2015, Accessed: Feb. 25, 2024. [Online]. Available: https://www.cabidigitallibrary.org/doi/full/10.5555/20163010570

A. K. Whitcraft, I. Becker-Reshef, C. O. Justice, L. Gifford, A. Kavvada, and I. Jarvis, “No pixel left behind: Toward integrating Earth Observations for agriculture into the United Nations Sustainable Development Goals framework,” Remote Sens. Environ., vol. 235, p. 111470, 2019.

V. Maus, G. Câmara, M. Appel, and E. Pebesma, “dtwsat: Time-weighted dynamic time warping for satellite image time series analysis in r,” J. Stat. Softw., vol. 88, pp. 1–31, 2019.

F. Petitjean, C. Kurtz, N. Passat, and P. Gançarski, “Spatio-temporal reasoning for the classification of satellite image time series,” Pattern Recognit. Lett., vol. 33, no. 13, pp. 1805–1815, 2012.

R. Khatami, G. Mountrakis, and S. V. Stehman, “A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research,” Remote Sens. Environ., vol. 177, pp. 89–100, 2016.

D. K. Bolton, J. M. Gray, E. K. Melaas, M. Moon, L. Eklundh, and M. A. Friedl, “Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery,” Remote Sens. Environ., vol. 240, p. 111685, 2020.

M. Claverie et al., “The Harmonized Landsat and Sentinel-2 surface reflectance data set,” Remote Sens. Environ., vol. 219, pp. 145–161, 2018.

A. Wolanin et al., “Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations,” Remote Sens. Environ., vol. 225, pp. 441–457, 2019.

J. Inglada, A. Vincent, M. Arias, and C. Marais-Sicre, “Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series,” Remote Sens., vol. 8, no. 5, p. 362, 2016.

C. E. Woodcock, T. R. Loveland, and M. Herold, “Preface: Time series analysis imagery special issue,” Remote Sens. Environ., vol. 238, p. 111613, 2020.

M. L. Ma Lei, L. M. Li ManChun, M. X. Ma XiaoXue, C. L. Cheng Liang, D. P. Du PeiJun, and L. Y. Liu YongXue, “A review of supervised object-based land-cover image classification.,” 2017, Accessed: Feb. 25, 2024. [Online]. Available: https://www.cabidigitallibrary.org/doi/full/10.5555/20173278932

L. Zeng, B. D. Wardlow, D. Xiang, S. Hu, and D. Li, “A review of vegetation phenological metrics extraction using time-series, multispectral satellite data,” Remote Sens. Environ., vol. 237, p. 111511, 2020.

M. Boschetti et al., “PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series,” Remote Sens. Environ., vol. 194, pp. 347–365, 2017.

W. Liu, J. Dong, K. Xiang, S. Wang, W. Han, and W. Yuan, “A sub-pixel method for estimating planting fraction of paddy rice in Northeast China,” Remote Sens. Environ., vol. 205, pp. 305–314, 2018.

K. Nogueira, O. A. Penatti, and J. A. Dos Santos, “Towards better exploiting convolutional neural networks for remote sensing scene classification,” Pattern Recognit., vol. 61, pp. 539–556, 2017.

L. Ghayour et al., “Performance evaluation of sentinel-2 and landsat 8 OLI data for land cover/use classification using a comparison between machine learning algorithms,” Remote Sens., vol. 13, no. 7, p. 1349, 2021.

M. ED Chaves, M. CA Picoli, and I. D. Sanches, “Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review,” Remote Sens., vol. 12, no. 18, p. 3062, 2020.

A.-A. Kafy et al., “Assessment and prediction of seasonal land surface temperature change using multi-temporal Landsat images and their impacts on agricultural yields in Rajshahi, Bangladesh,” Environ. Chall., vol. 4, p. 100147, 2021.

M. J. Ottman, B. A. Kimball, J. W. White, and G. W. Wall, “Wheat Growth Response to Increased Temperature from Varied Planting Dates and Supplemental Infrared Heating,” Agron. J., vol. 104, no. 1, pp. 7–16, Jan. 2012, doi: 10.2134/agronj2011.0212.

G. C. Nelson et al., Food security, farming, and climate change to 2050: scenarios, results, policy options, vol. 172. Intl Food Policy Res Inst, 2010. Accessed: Feb. 25, 2024. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=baD-65CCi_sC&oi=fnd&pg=PR11&dq=Nelson,+G.,+Rosegrant,+M.,+Palazzo,+A.,+%26+Gray,+I.+(2010).+Food+security,+farming,+and+climate+change+to+2050:+scenarios,+results,+policy+options.+https://books.google.com/books%3Fhl%3Den%26lr%3D%26id%3DbaD-65CCi_sC%26oi%3Dfnd%26pg%3DPR11%26ots%3DNJEQntEqtz%26sig%3D43u3UHeSN3mpcQxuk6f__zmi89I&ots=NKATnryprG&sig=M2Wc_Jm-4e_1EJ1fbC4OuYTk-Ww

Z. C. Zhao Chuang et al., “Plausible rice yield losses under future climate warming.,” 2017, Accessed: Feb. 25, 2024. [Online]. Available: https://www.cabidigitallibrary.org/doi/full/10.5555/20173068584

C. Losiri, M. Nagai, S. Ninsawat, and R. P. Shrestha, “Modeling urban expansion in Bangkok metropolitan region using demographic–economic data through cellular automata-Markov chain and multi-layer perceptron-Markov chain models,” Sustainability, vol. 8, no. 7, p. 686, 2016.

F. Marini, J. Zupan, and A. L. Magr??, “On the use of counterpropagation artificial neural networks to characterize Italian rice varieties,” Anal. Chim. Acta, vol. 510, no. 2, pp. 231–240, 2004.

F. Ramadhani, R. Pullanagari, G. Kereszturi, and J. Procter, “Mapping of rice growth phases and bare land using Landsat-8 OLI with machine learning,” Int. J. Remote Sens., vol. 41, no. 21, pp. 8428–8452, Nov. 2020, doi: 10.1080/01431161.2020.1779378.

K. Clauss, M. Ottinger, and C. Kuenzer, “Mapping rice areas with Sentinel-1 time series and superpixel segmentation,” Int. J. Remote Sens., vol. 39, no. 5, pp. 1399–1420, Mar. 2018, doi: 10.1080/01431161.2017.1404162.

Gumma, Nelson, and Yamano, “Mapping drought-induced changes in rice area in India,” Int. J. Remote Sens., vol. 40, no. 21, pp. 8146–8173, Nov. 2019, doi: 10.1080/01431161.2018.1547456.

T. Sakamoto, M. Yokozawa, H. Toritani, M. Shibayama, N. Ishitsuka, and H. Ohno, “A crop phenology detection method using time-series MODIS data,” Remote Sens. Environ., vol. 96, no. 3–4, pp. 366–374, 2005.

X. Xiao et al., “Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images,” Remote Sens. Environ., vol. 100, no. 1, pp. 95–113, 2006.

C. Conrad, R. R. Colditz, S. Dech, D. Klein, and P. L. G. Vlek, “Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems,” Int. J. Remote Sens., vol. 32, no. 23, pp. 8763–8778, Dec. 2011, doi: 10.1080/01431161.2010.550647.

A. Veloso et al., “Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications,” Remote Sens. Environ., vol. 199, pp. 415–426, 2017.

A. Veloso et al., “Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications,” Remote Sens. Environ., vol. 199, pp. 415–426, 2017.

Y. Ban, P. Zhang, A. Nascetti, A. R. Bevington, and M. A. Wulder, “Near real-time wildfire progression monitoring with Sentinel-1 SAR time series and deep learning,” Sci. Rep., vol. 10, no. 1, p. 1322, 2020.

M. Han, X. Zhu, and W. Yao, “Remote sensing image classification based on neural network ensemble algorithm,” Neurocomputing, vol. 78, no. 1, pp. 133–138, 2012.

J. Ding, B. Chen, H. Liu, and M. Huang, “Convolutional neural network with data augmentation for SAR target recognition,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 3, pp. 364–368, 2016.

Q. Feng, J. Gong, J. Liu, and Y. Li, “Monitoring cropland dynamics of the Yellow River Delta based on multi-temporal Landsat imagery over 1986 to 2015,” Sustainability, vol. 7, no. 11, pp. 14834–14858, 2015.

J. Geng, J. Fan, H. Wang, X. Ma, B. Li, and F. Chen, “High-resolution SAR image classification via deep convolutional autoencoders,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 11, pp. 2351–2355, 2015.